
 1

USING OPNET TO SIMULATE THE COMPUTER SYSTEM THAT
GIVES SUPPORT TO AN ON-LINE UNIVERSITY INTRANET

Norbert Martínez1, Angel A. Juan2, Joan M. Marquès3, Javier Faulin4

{1, 3, 5} [norbertm@uoc.edu , jmarquesp@uoc.edu]

Computer Science Studies
Open University of Catalonia (Spain)

{2} [angel.alejandro.juan@upc.edu]

Dep. of Applied Mathematics I
Technical University of Catalonia (Spain)

{4} [javier.faulin@unavarra.es]

Dep. of Statistics and Operations Research
Public University of Navarra (Spain)

ABSTRACT

In this paper, we present a preliminary
discrete-event simulation study carried out
on the computer system that gives support
to the intranet of the Open University of
Catalonia. The main purpose of this study,
developed with the OPNET simulation
software, was to help the computer network
managers to obtain a better understanding
of its internal operation. Other objectives of
our paper are related to the discovery of
possible performance problems (bottle
necks, weak points in the structure, etc.),
and to the testing of new designs of the
network that could increase its
performance, reliability and scalability
levels. Finally, we discuss how discrete
event simulation software can help
computer networking students to improve
their practical knowledge on this subject.

Keywords: Simulation, Computer Science
Applications, Network Design

1. INTRODUCTION

Computer networks have become
extremely important in our day-to-day life,
since most companies and institutions
depend on the appropriate functioning of
their computer networks.

In order to analyze computer networks

performance, both analytical and simulation
methods can be used. Analytical methods
are based upon mathematical analysis that
characterizes a network as a set of
equations. This approximation usually
implies to use several restrictive
assumptions, which tend to be not too
much realistic, since networks are complex
systems formed up by hardware and
software (protocols, applications, queueing
policies, etc.). On the other hand,
simulation techniques can be used to model
in detail the dynamic nature of real
computer networks [Law, Kelton; 2000]
[Banks, et al; 2001]. Simulation allows
engineers to test different network designs
(even before the network physically exists)
and to perform what-if analysis with models
of the already existent networks without
exposing them to failures or inoperative
periods.

2. THE CASTELLDEFELS PROJECT

The Open University of Catalonia (UOC) is
an on-line university with about 37,000
community members, including students
from Spain and Latin America, professors,
managers and other staff. With this volume
of potential intranet users, performance
fine-tuning of the computer system that
gives support to the UOC intranet becomes
a major task for system managers. For that
reason, a group of professors (from areas
such as computer networking, operations
research and simulation), network

 2

managers and computer science students
started the so called Castelldefels Project
(named behind the city where the computer
system is located). The main objective of
this project is to improve the system
performance levels (and, consequently, to
increase the quality of service offered to
intranet users) by selecting optimal values
for configuration parameters such as
network topology, hardware devices,
queuing and balancing policies, protocols,
etc.) [Kurose, Ross; 2005] [Peterson,
Davie; 2003].

Special attention has to be paid to two
concrete aspects of the network system:
the load balance mechanisms and the
session persistence requirements.

The computer system makes use of load
balancing mechanisms, which allow a
convenient load distribution (requests from
distinct users) among different available
servers. Two dedicated hardware devices
perform this load balancing task. While one
of the load balancers is operating, the other
is in stand-by status. That way,
maintenance tasks can be done without
having to stop the web service and,
moreover, this service will still being
available even if the active load balancer
fails. These load balancers are responsible
for assuring readiness, at any moment, of
web services (HTTP, HTTPS, FTP, SMTP
and other proprietary applications).
Different load assignment policies can be
set up in the balancer. This way, the
balancer device decides which available
server will attend an incoming user request
based on one of the following selection
criteria: randomly, sequentially, less loaded
server, smallest response-time server,
etc...). In order to check if a concrete server
is operative, the load balancer carries out
regular tests on the servers. This
monitoring process can also be configured
with different optional parameters (such as
elapsed time between two consecutive
tets).

For some services, it is also very important
to maintain a specific user session in the
same front-end (that is to say, to guarantee
persistence of the session): when a user
introduces its login and password and gets
access to the intranet, all information
associated to her (profile, mailbox, etc..) is
loaded from the database into the front-end.
Therefore it is not optimal to reassign her to
a different front-end each time she does a

new request (since that would add
unnecessary load to servers). There are
different policies to maintain a user session:
using the origin IP address, inserting a
cookie in the user PC, etc..).

At the end, quality of service will depend on
how fast, reliable and error-free is the
service we offer to the intranet users.

Figure 1: Network system

3. NETWORK SYSTEM DESCRIPTION

Figure 1 shows a graphical representation
of the network system under consideration.
When a user opens a web browser and
types the University URL, a portal page is
loaded into the user browser (clients
requests are balanced among three portal
servers). To complete that process, the
client request has already passed through
the frontier routers, crossed the firewalls,

 3

and arrived to the load balancers, where a
new session has been settled down with an
available portal server.

Once the user has introduced her login and
password (and they have been validated in
the database), she enters the intranet. This
means that her request has been balanced
and it has finally arrived to an available
front-end server (there are about 25 front-
ends servers in the system).

Between the load balancers and the front-
ends there are also two more hardware
devices: a web accelerator and two
application firewalls. The first of these
devices tries to compress all traffic sent by
the server to the user, so that the resulting
data need less bandwidth and could be
delivered faster to the user. The firewalls
add security to the communication process,
avoiding execution of non-allowed actions
inside the intranet.

4. OPNET SIMULATION SOFTWARE

There are several discrete-event simulation
programs specially designed for network
simulation. One of these programs is the
open-source OMNeT++ [Varga; 2001].
After some preliminary studies, though, we
decided to use OPNET for two reasons: (i)
it seemed to be the most widely tested,
used and documented software in the
network simulation area [Chang; 1999]
[Aboelela; 2003] [Brown, Christianson;
2004] [Qadan, Guizani; 2005], and (ii) a
free license for academic and research use
was available from the software developer.

OPNET is a very complete software
composed by several modules. Opnet IT
Guru, the main module, provides a Virtual
Network Environment (VNE) that can model
the behavior of an entire network (including
routers, switches, protocols, servers, and
individual applications). It can be scaled
from Local Area Networks (LANs) to Wide
Area Networks (WANs) formed up by
thousands of workstations.

VNEs can be created using a special
purpose GUI interface (that is, selecting
appropriate hardware elements -such as
workstations, servers, routers, switches,
hubs, etc.- and then connect them together
according to the desired topology). On the
other hand, for existing networks the

program can automatically perform this
modeling process. The software provides
models for the most popular brands of
network communication hardware. OPNET
modeling and simulation flow diagram is
shown in Figure 2.

Figure 2: OPNET modeling & simulation flow

Another module, the Application
Characterization Environment (ACE),
allows modeling and analyzing the behavior
of programs that reside above the topology
layer –a web browser or a database, for
instance. That is, the software can simulate
both network topology and also any high
level application that runs on that network.

For advanced research, OPNET Modeler
offers advanced tools for model design,
simulation, data mining and analysis. Using
this software, it is possible to edit the
source code of available hardware devices
libraries. Modeler is based in a three-level
design hierarchy: (1) a network model,
where networks and sub-networks are
defined; (2) a node model, where node’s
(hardware devices) internal structure is
defined; and, (3) a processes model, where
internal node states and functioning can be
defined by using C/C++ programming
[Svensson, Popescu; 2003].

5. SYSTEM MODELING

In this first stage of our project, we have
focused in the partial modeling of the
Castelldefels architecture. For that reason,

 4

we have centered our efforts into the
Campus network, which is the infrastructure
mainly used by students and professors.

Additionally, we reduced the model size of
the Campus network, assuming that it had
less servers and devices than the real
system. In future experiments we expect to
simulate the full model, that is: 25 front-
ends, 3 mail servers, one backup load
balancer and up to 25,000 concurrent users
requesting HTTP, FTP and Email services.

The resulting OPNET model can be seen in
Figure 3:

Figure 3: Castelldefels model implemented in OPNET

The main components of this model are the
following:

• Applications: Each application
defines a service that can be
executed in a workstation or in a
server. It also defines the load of
the system. To emulate the
behavior of the Campus application
-a Web-based front-end with file
transfer and email support-, we
defined three OPNET applications:
HTTP (Heavy Browsing), FTP (Low
Load) and Email (Medium Load)

• Profiles: A profile is a group of
applications to be used by some
type of users such as students,
managers, visitors, etc. Each profile
also defines the statistical
distributions for the simulation
engine. In this first model, only one
general profile -with support for all
applications- was defined.

• Servers: There were 8 servers to
execute applications: 5 front-end
servers to emulate the basic

Campus activity using HTTP and
FTP, and 2 email servers. All
servers were directly connected to
the load balancer.

• Load balancer: It is a device that
decides which server will attend the
next user request. Servers are
assigned to balanced applications.
Each application is balanced using
its own policy: Round-Robin for
HTTP and FTP, and Number of
Connections for Email.

All former devices were connected to a
router through a firewall, which restricts the
supported applications. The router was the
single connection to the Internet.

• User Networks: several networks
were setup to emulate students
activity. Each network can have
different number of users, from one
to hundreds, and it was connected
to Internet through a gateway.
Services were directly requested to
the Load balancer.

Some system devices were ignored in this
preliminary model: several backbone and
subnet switches, the database server and
the redundant load balancer. In future
models all of them will be integrated and
fully supported.

6. SIMULATION RESULTS

Since this is just a preliminary study, we will
show here only two of the multiple
experiments we can make in order to
validate the correctness of the model as
well as its suitability for pedagogical
purposes.

In the first experiment we wanted to:

a) Study the performance of a single-
server system under different loads
(number of connected users); the
response time was expected to get
worse as the number of users
increases –since more users
implies more requested services

b) Compare results in (a) with those of
a multiple-server system under
balancing policies.

Ten hours of activity where simulated. The
simulation was done considering four

 5

scenarios. The first three scenarios had a
single server with different number of active
sessions (25, 50 and 100). The fourth
scenario had 100 users connected to 5
front-ends balanced using a random policy.

Figure 4: Experiment 1: Traffic sent (packets/sec)

As can be seen in Figure 4, as the number
of users increases, more traffic is
generated. Observe also that, as expected,
introduction of load balancing has no effect
on the level of generated traffic.

Figure 5: Experiment 1: Response time (in seconds)

As can be seen in Figure 5, use of load
balancing for multiple servers can
significantly improve performance. The
response time associated to the highest
load level under balancing is lower than any
other single-server configuration (including

the one with the smaller number of user
sessions).

Figure 6: Experiment 1: Random balancing avg. traffic

Finally, Figure 6 shows averages for traffic
associated to each balanced server. After a
warm-up period (more than 4 hours), all
servers seem to converge to similar
average loads.

The second experiment was designed to
compare performance of different load
balancing policies under the same user
activity. Five servers were again balanced
during ten simulated hours, with 100 users
requesting HTTP services. The policies
considered were: (a) Round-Robin
(sequential), and (b) Number of
Connections.

Figure 7: Experiment 2: Round-Robin average traffic

Figure 7 shows averages for traffic sent (in
bytes/sec) by each balanced server under
the Round-Robin policy. This policy assigns

 6

each incoming requests to the next server
in the sequence. All servers tend to have
the same average activity.

Figure 8: Experiment 2: Number of Conn. avg. traffic

Finally, Figure 8 shows averages for traffic
sent by all balanced servers under a
Number of Connections policy. This policy
seems to imply faster load stabilization for
each server, but it also shows more
variance among average servers load.

7. ACADEMIC APPLICATIONS

It is expensive to set up a physical
networking lab for university students.
Moreover, even if one university made that
investment, such labs would have
significant limitations when dealing with
different possible scenarios (what-if
analysis). In fact, it is virtually impossible to
cover, using a physical network, the wide
diversity of existing technologies and
configurations. On the other hand, only
LANs could be considered in a physical lab.

For that reason, use of discrete-event
simulation, as a methodology to confront
network design and fine-tuning problems, is
not only interesting in the professional
arena but also in the academic one
[Theunis, et al; 2003]. Learning these
technologies is really worthy: the current
level of computer software and hardware
allows the efficient application of simulation-
based methods and algorithms to network
analysis, allowing a major comprehension
of networks’ internal functioning process.
Using simulation, students are able to

analyze alternative scenarios and designs
(what-if analysis) both for LANs and WANs.

8. FURTHER WORK

The model presented here is a preliminary
one and, therefore, it needs to be improved
so that it matches all subtle details of the
real system (including inter-arrival time
distributions, more detailed balancing
policies session persistence policies, etc.).

CONCLUSIONS

We have discussed the importance of using
probabilistic methods to study network
performance. Among the available
methods, simulation techniques offer clear
advantages over analytical ones, such as:
(a) the opportunity of creating models which
faithfully reflect the real structure
characteristics and behavior, and (b) the
possibility of obtaining additional
information about the system internal
functioning. We have used OPNET to
develop a preliminary model of the
computer system that gives support to the
UOC intranet. The model is still far from
reflect all real system details, but it allow us
to start experimenting with some what-if
scenarios. More work is being developed to
mimic the real system characteristics, so
that derived results will help managers to
take strategic decisions regarding the
system. Finally, we have discussed how
discrete-event simulation software can add
value to the network engineers training
process.

REFERENCES

• Aboelela, E. (2003): Network Simulation

Experiments Manual. Morgan Kaufmann
• Banks, et al (2001): Discrete-Event

System Simulation. Prentice-Hall
• Brown, K.; Christianson, L. (2004): Opnet

Lab Manual. Prentice Hall.
• Chang, X. (1999): “Network simulations

with Opnet”. In Proceedings of the 1999
Winter Simulation Conference, pp. 307-
314

• Kurose, J.; Ross, K. (2005): Computer
Networking: A Top-Down Approach
Featuring the Internet. Addison-Wesley

 7

• Law, A.; Kelton, D. (2000): Simulation
Modeling and Analysis. McGraw-Hill

• Peterson, L.; Davie, B. (2003): Computer
Networks. A Systems Approach. Morgan
Kaufmann

• Qadan, O.; Guizani, M. (2005): OPNET
Lab Manual. John Wiley & Sons

• Svensson, T.; Popescu, A. (2003):
“Development of laboratory exercises
based on OPNET Modeler”. Master
thesis. Available at:
http://jeep.its.bth.se/~adrian/opnet/

• Theunis, J.; et al (2003): "Advanced
Networking Training for Master Students
Through OPNET Projects". In
Proceedings of the 2003 OPNETWORK
Conference, Washington D.C., USA

• Varga, A. (2001): "The OMNeT++
Discrete Event Simulation System". In
Proceedings of the European Simulation
Multiconference (ESM'2001). June 6-9,
Prague, Czech Republic.

