
What is and How to use LaCOLLA.
An introduction to LACOLLA and its API.

Authors: Joan Manuel Marquès
Xavier Vilajosana

Date:February 2005

Index
1.Introduction.............................................................................................................................. 2

What is LaCOLLA?............................................................................................................... 2
Functionalities........................................................................................................................ 2
Architecture............................................................................................................................ 3
Requirements..........................................................................................................................4

2.How to connect an application to an UA:................................................................................ 5
The API:................................................................................................................................. 5
API..........................................................................................................................................6

3.Use cases of the API operations...............................................................................................7
API used by Applications:................................................................................................. 7

1.Presence....................................................................................................... 8
2.Events:......................................................................................................... 9
3.Objects:...................................................................................................... 10
4.Group Administration:...............................................................................11
5.Member Administration:............................................................................12
6.Tasks.......................................................................................................... 13
7.Instant Message  Service:...........................................................................14

API used by UserAgent:.................................................................................................. 14
1.Presence..................................................................................................... 15
2.Events:....................................................................................................... 15
3.Group Administration:...............................................................................16
4.Tasks:......................................................................................................... 16
5.Applications state control:......................................................................... 17
6.Instant Message Service:............................................................................18

4.API operation contracts: ........................................................................................................19
API used by Applications:............................................................................................... 19

1.Presence..................................................................................................... 19
2.Events.........................................................................................................20
3.Objects:...................................................................................................... 21
4.Group Administration:...............................................................................22
5.Members Administration:.......................................................................... 23
6.Tasks:......................................................................................................... 24
7.Instant Message Service:............................................................................25

API used by UserAgent:.................................................................................................. 25
1.Presence:.................................................................................................... 25
2.Events:....................................................................................................... 26
3.Group Administration:...............................................................................26
4.Tasks:......................................................................................................... 27
5.Applications state control:......................................................................... 27
6.Instant Message Service:............................................................................28

5.LaCOLLA data structures description:.................................................................................. 29



Description of the objects used by LaCOLLA:.................................................................... 29
Description of the events used by LaCOLLA:..................................................................... 32
Description of the GroupInfo structure used by LaCOLLA:................................................34

6.API usage example. ...............................................................................................................36



1.Introduction
What is LaCOLLA?
LaCOLLA is a fully decentralized infrastructure for building collaborative applications and
providing them general purpose collaborative functionalities.

Key aspects of LaCOLLA:
• Avoids applications to deal with complexities derived from groups/members dispersion all over

the Internet.
• Resources are provided by members of the group.
• Each member can use the resources belonging to group, what augments capacity and availability
• Decentralized. Autonomy of members.

Functionalities
• Dissemination of events (immediate & consistent): information about what is occurring in the

group is spread among members of the group as events. All connected members receive this
information right after it occurs. Disconnected members receive it during the re-connection
process.

• Storage (virtually strong consistency) of objects: components connected to a group can access
the latest version of any object. Since objects are replicated, when it is modified, if an application
asks for that object LaCOLLA guarantees that the last version will be provided (even thought all
replicas were not consistent and it will require some time to have all of them consistent).

• Execution of tasks: members of a group (or the applications these members use) can submit
tasks to be executed using computational resources belonging (or available) to the group.

Figure 1. Example of group using application A and B in top of LaCOLLA.

Internet

Application A

Peer LaCOLLA

Transport

UA

UA
Transport

UA

RAUA GAPA

Peer LaCOLLA

Transport

UA

UA

Peer LaCOLLA

Transport

UA

RAUA GAPA

Peer LaCOLLA
TDA EATransport

UA

RAUA EA

Peer LaCOLLA
GAPA

Transport
UA

UA

Peer LaCOLLA

Application
B

Application
 B

Transport

UA

TD
A

UA GAPA

Peer LaCOLLA
RA

Application
 B

Application
 B

Application 
B

Application A

Application A

Application A

Application A



• Presence: know which components and members are connected to the group.

• Location transparency: applications don't have to know the location (IP address) of objects or
members. LaCOLLA resolves them internally (similar to domain name services like DNS).

• Instant messaging: send a message to a subgroup of members of the group.

• Management of groups and members: add, delete or modify information about members or
groups.

• Disconnected mode: allow applications operate offline. During re-connection, the infrastructure
automatically propagates the changes.

Architecture
• User Agent (UA): interacts with applications. Through this interaction, it represents users

(members of the group) in LaCOLLA.

• Repository Agent (RA):  stores objects and events generated inside the group in a persistent
manner.

• Group Administration and Presence Agent (GAPA): in charge of the administration and
management of information about groups and their members. It is also in charge of the
authentication of members.

• Task Dispatcher Agent (TDA): distributes tasks to executors. In case any are busy, the TDAs
queues them. Guarantees that tasks will be executed even though the UA and the member
disconnects. 

• Executor Agent (EA): Executes tasks.

Components interact one to each other in an autonomous manner. The coordination among the
components connected to a group is achieved through internal mechanisms. Internal mechanisms
have been grouped in:

• events

• objects

• tasks

• presence

Figure 2. LaCOLLA Peer. 

UA RA GAPA 

Transport 

... 

Applications 

Peer LaCOLLA 
EA TDA 



• location

• groups

• members

• instant messaging.

They are implemented using weak-consistency optimistic protocols and random decision
techniques.

Requirements
• Decentralization: no component is responsible of coordinating other components. No

information is associated to a single component. Centralization leads to simple solutions, but
with critical components conditioning the autonomy of participants.

• Self-organization of the system: the system should have the capability to function in an
automatic manner without requiring external intervention. This requires the ability of
reorganizing its components in a spontaneous manner in presence of failures or dynamism
(connection, disconnection, or mobility).

• Oriented to groups: group is the unit of organization.

• Group availability: capability of a group to continue operating with some malfunctioning or
not available components. Replication (of objects, resources or services) can be used to
improve availability and quality of service.

• Individual autonomy: members of a group freely decide which actions perform, which
resources and services provide, and when connect or disconnect.

• Group's self-sufficiency: a group must be able to operate with resources provided by its
members (ideally) or with resources obtained externally (public, rent, interchange with other
groups, ...)

• Allow sharing: information belonging to a group (e.g. events, objects, presence information,
etc.) can be used by several applications.

• Security of group: guarantee the identity and the selective and limited access to shared
information (protection of information, authentication).

• Availability of resources: provide mechanisms to use resources (storage, computational, etc.)
belonging to other groups (public, rented, interchange between groups to improve availability,
etc.)

• Internet-scale system: formed by several components (distributed). Members and components
can be at any location (dispersion).

• Scalability: in number of groups, guaranteed because each group uses its own resources.

• Universal and transparent access: participants can connect from any computer or digital
device, with a connection independent view (e.g. as a web browser).

• Transparency of location of objects and members: applications don't have to worry about
where are the objects or members of the group. Applications use a location independent
identifier.

• Support disconnected operational mode: work without being connected to the group. Very
useful for portable devices.



2.How to connect an application to an UA:
The API:
LaCOLLA API is a bidirectional API, this means that the application can invoke methods from the
API in order to get a service of LaCOLLA. In the other hand LaCOLLA notifies to applications
different events that are happening in the group/s which we are connected to. 

LaCOLLA provides different set of services as mentioned in the chapter before. Also the
notifications of LaCOLLA are related to events happened in LaCOLLA due to many reasons. The
main reasons are related to the activity of the rest of the members connected to the group of
LaCOLLA whose we are connected. 

LaCOLLA works in an asynchronous way, for this reason when ever an occurrence happens it is
notified directly to the application by invoking an application defined method. LaCOLLA knows
where and how many applications are connected.

The API is distributed in two parts. That architecture permits 

1. LaCOLLA Part: Services offered by LaCOLLA to applications connected to an UA. The set of
services that an application can ask to LaCOLLA. For instance login, logout, disseminateEvent,
sendInstantMessage, executeTask,...

2. Application Part:Notification services that LaColla offers to the applications, these services are
invoked by LaCOLLA, due to its asynchronous behaviour. The application developer must
define the response of the application for each of that notifications. For instance
newConnectedMember, newEvent, notifyTaskException,...

• How does API work?
The UA publishes its API into a RMIRegistry  defined by LaCOLLA. The application must resolve
the API location and get a remote instance of it.

Henceforth, the application can use all the public methods published in the API.

When an application starts,publishes its part of the API into a local RMIRegistry (it may be remote)
in the host and the port specified by application's developer.

Every application must redefine the methods from the class ApplicationsSideApi. These methods
are invoked by the UserAgent when LaCOLLA wants to notify something to an application.  We
must note the asynchronous execution of this methods.

LaCOLLA provides the interface ApplicationSideApi. That interface contains methods that the
application must implement. During the development of the application the methods from the
ApplicationSideApi interface must be redefined in a class named ApplicationSideApiImpl. That
class must implement the methods from the class mentioned before. The implementation class must
be set in the package of the application, inside a folder named API. 

Example : package Apps.MessageServer.API

The application must implement a class that resolves the LaCOLLA API.  In a class implemented by
the application may be resolved(using standard RMI) the API remote object from LaCOLLA and
invoked the desired methods from it. More information could be found in the documentation
attached to LaCOLLA install version.



API
The functionalities provided by LaCOLLA API  are described below:

Table A. API functions that User Agents offer to applications. Functions marked with ** are not yet implemented.
Category Function Description

Presence
login Connects user to group.
logout Disconnects user from group.
whoIsConnected ** Which members are connected to the group?

Events
disseminateEvent Sends an event to all applications belonging to group.
eventsRelatedTo Which events have occurred to a specific object?

Objects
putObject Stores an object in LaCOLLA.
getObject Obtains an object stored into LaCOLLA.
removeObject Removes an object stored in LaCOLLA.

Tasks

submitTask Submit  a  task  to  be  executed  by  computational
resources belonging to group.

stopTask Stops a task.
getTaskState In which state is the tasks?

Instant Messaging sendInstantMessage Sends a message to specified members of the group.

Figure 3. API design overview.

UA

Api

Application

ApplicationSideApi

Login(...)
Logout(...)
disseminateEvent(...)
putObject(...)
getObject(...)
removeObject(...)
addGroup(...)
addMember(...)
...

newConnectedMember(...)
memberDisconnected(...)
newEvent(...)
Exception(...)
...

RMIRegistry:
host: 192.168.2.11
port: 2333
Object: ApplicationSideApiImpl.class

RMIRegistry:
host: 134.23.129.21
port: 2156
Object: ApiImpl.class



Category Function Description

Groups

addGroup Creates a new group.
removeGroup** Removes a group.
modifyGroup** Modifies the properties of a group.
getGroupInfo Gets  information  about  the  properties  of  a  group

asynchronously. (See the groupInfo function)
getGroupInfoSync** Gets information about the properties of a group in a

synchronous  manner.  The  function  does  not  return
until   the  operation  is  completed  and  a  result  is
available.

Members

addMember Creates a new member.
removeMember** Removes a member.
modifyMember** Modifies the properties of a member.
getMemberInfo Gets information about the properties of a member.

Table B. API functions that UA invokes on applications. Functions marked with ** are not yet implemented.

Category Function Description

Presence
newConnectedMember Notifies that a new member has been connected.
memberDisconnected Notifies that a member has been disconnected.

Events newEvent Reception of an event occurred in the group.

Tasks
taskStopped Notifies that the task has been stopped nicely.
taskEnded Notifies the ending of a task.

Instant Messaging newInstantMessage Reception of a new instant message.
Groups groupInfo Reception of the group information.

Other functions

exception** Notifies  that  an  internal  exception  or  anomalous
situation has occurred.

appIsAlive UA  queries  the  state  of  the  application.  A  boolean
result must be returned.

The next two sections presents the use cases and operation contracts of LaCOLLA API respectively.
As mentioned before, LaCOLLA API is divided in two parts, the API used by applications and
provided by  UserAgents an the API used by UserAgents and defined by applications. Each of the
following sections is divided in that two parts.



3.Use cases of the API operations
Describes the events sequence and the actors of that sequence. Also describes the interaction within
the actors and the API.

API used by Applications:
That part contains the methods provided by LaCOLLA API an susceptible to be used by
applications.

1. Presence

1.1.Use case login

USE CASE Authentication process
ACTORS Application
PURPOSE Authenticate and login a member

SUMMARY The user tries to be authenticated in LaCOLLA.
If the operation success,the user logins
LaCOLLA. Receives its memberId. Henceforth,
the user  is allowed to use all the mechanisms
provided by LaCOLLA API for this session. 

Events sequence

Application LaCOLLA
1. login (String groupId,String userId, String pswd,
String GapaId,String GapaAdress, int GapaPort,String
aplicHost_,int aplicPort_)
 2.

The user is authenticated.

If the authentication process succeeds
newConnectedMember notification is executed.

3.a response is received

1.2.Use case  logout

USE CASE Logout of an Application
ACTORS Application
PURPOSE Logout of a connected user of  LaCOLLA

SUMMARY A user asks for the disconnection of the group
which is connected.

Events sequence



Application LaCOLLA
1. logout (String groupId,String userId,String
aplicName)

2. 

Disconnects the user from the group.

Notifies memberDisconnected to the rest of
members of the group.

1.2.Use case  whoIsConnected

USE CASE Who is connected to a Group
ACTORS Application
PURPOSE Get the list of connected members

SUMMARY The user asks for the list of connected members

Events sequence

Application LaCOLLA
1. whoIsConnected (String groupId)

2. 

Gets a list with the memberId of connected all
members to the specified group.

3. Receives a list with the identificators of the
connected members.

2. Events:

2.1.Use case  disseminateEvent

USE CASE Disseminate an Event
ACTORS Application
PURPOSE Notify to rest of the members of the group a new

event.
SUMMARY The user wants to send an event to the rest of the

members of the group.



Events sequence

Application LaCOLLA
1. disseminateEvent(String groupId,Event evt)

2.

Store the event at least into one RA.

Executes  newEvent  operation to deliver the
new Event to the rest of the members of the
group.

The event will be delivered to disconnected
members in the login process.

2.2.Use case eventsRelatedTo

USE CASE Events related to an Object
ACTORS Application
PURPOSE Get all the events related to an object.

SUMMARY The user wants to get all the events generated
over an object.

Events sequence

Application LaCOLLA
1. eventsRelatedTo(String groupId,String
objectId)

2.Selects the set of events related with the
specified object.

3.A list with all events is received.

3. Objects:

3.1.Use case putObject

USE CASE Put Object
ACTORS Application
PURPOSE Store an object permanently in LaCOLLA. The

new object will be accessible by the rest of the
members of the group.

SUMMARY The user wants to store an object. The object is
accessible by the rest of the members of the
group.

Events sequence



Application LaCOLLA
1. putObject (ObjectLaCOLLA obj)

2. 

Stores the object in a RA

Delivers an event informing about the new
Object. It uses newEvent operation.

3. a response is received.

3.2.Use case getObject

USE CASE Get Object
ACTORS Application
PURPOSE Get an object stored in LaCOLLA

SUMMARY The user asks for a stored object in LaCOLLA

Events sequence

Application LaCOLLA
1. getObject (ObjectLaCOLLA obj)

2. Gets the object referenced by the objectId 
3. the object is received

3.3.Use case getInfoObject

USE CASE Get Object Information
ACTORS Application
PURPOSE Gets the information of the specified object.

SUMMARY The user asks for the information of the stored
object.

Events sequence

Application LaCOLLA
1. getInfoObject (String groupId,String objectId)

2.Gets the information relative to the object
3.the object is received

3.4.Use case removeObject

USE CASE Remove Object
ACTORS Application
PURPOSE Deletes the object stored in LaCOLLA



USE CASE Remove Object
SUMMARY An user ask for the deletion of an object.

Events sequence

Application LaCOLLA
1. removeObject (String groupId, String
objectId)

2. 

An RA storing the object deletes the object an
the references to it.

An event notifying the deletion of the object is
delivered.

The rest of RA of the system delete the object at
the event reception.

The UA deletes all entries of the object in its
summary when the event is received.

3. a response is received.

4. Group Administration:

4.1.Use case addGroup

USE CASE Add Group
ACTORS Application
PURPOSE Creates a new group and the user is connected to

it.
SUMMARY The user is connected to the group. The

resources of the user become resources of the
new group.

Events sequence

Application LaCOLLA
1. addGroup (String userId,GroupInfo
groupInfo)

2. Created the new group with the information
contained in the GroupInfo.

3.The identifier of the new group is received

4.2.Use case getInfoGroup

USE CASE Ask for the information of the group
ACTORS Application



USE CASE Ask for the information of the group
PURPOSE Ask for the information of the group

SUMMARY The user asks for the information of the group.

Events sequence

Application LaCOLLA
1. getInfoGroup (String userId,String
groupId,String aplicId)

2. Ask for the information of the group. 

The information is delivered to the application
by  newInfoGroup.

3. The information about the group is received

5. Member Administration:

5.1.Use case addMember

USE CASE Add Member
ACTORS Application
PURPOSE Adds a member to the group

SUMMARY The user asks for the new member addition.

Events sequence

Application LaCOLLA
1. addMember (String memberId, String
groupId, Object memberInfo, String role,String
username, String password, String
emailAddress)

Adds a new member to the specified group.

3. The notification of the new member is
delivered.

5.2.Use case getInfoMember

USE CASE Get Member Information
ACTORS Application
PURPOSE Get the information related to a member

SUMMARY The user asks for the information of a member

Events sequence



Application LaCOLLA
1. getInfoMember(String memberId,String
groupId)

2.gets the information of a member
3.the information is received

6. Tasks

6.1.Use case submitTask

USE CASE Submit Task
ACTORS Application
PURPOSE Sends task to execute

SUMMARY The user sends a task to execute

Events sequence

Application LaCOLLA
1. submitTask (byte[] xml,,String groupId)

2.Sends the task described in  byte[] xml to be
executed.

3.The task identifier is received

6.2.Use case stopTask

Use case Stop Task
ACTORS Application
PURPOSE Stops an executing task.

SUMMARY The user stops a task being executed.

Events sequence

Application LaCOLLA
1. stopTask (String idTask,,String groupId)

2.The task wit identifier idTask is stopped
3.The notification of stopped task is received.

6.3.Use case getTaskState

USE CASE Get Task State
ACTORS Application
PURPOSE Get the task state



USE CASE Get Task State
SUMMARY The user asks for the current task state

Events sequence

Application LaCOLLA
1. getTaskState(String idTask,String groupId)

2.ask for the task idTask state.

3.The notification with the state of the task is
received.

7. Instant Message  Service:

7.1.Use case sendInstantMessage

USE CASE Send Instant Message
ACTORS Application
PURPOSE Sends an instant message to a list of members

SUMMARY The user sends a message to a list of members of
the group

Events sequence

Application LaCOLLA
1. sendInstantMessage (String memberId,String
groupId,Object message,ArrayList targetList)

2.The system gets all the sites where the
members of the list are connected and sends an
instant message to each of them.

3.The notification of message send is received

API used by UserAgent:
That part contains the methods provided by the application API an susceptible to be used by
UserAgent.

1. Presence

1.1.Use case newConnectedMember

USE CASE New Connected Member Notification
ACTORS UserAgent and applications
PURPOSE Notify to all connected members the connection

of a member.
SUMMARY The UA communicates to the connected

applications the connection of the member.



Events sequence

Application LaCOLLA
1. newConnectedMember(String groupId,String
userId,String memberId)

2. The application receives the notification.

1.2.Use case memberDisconnected

USE CASE Member disconnected notification
ACTORS UserAgent and applications
PURPOSE Notify to all connected applications the logout of

a member.
SUMMARY The user agent notifies to the application the

disconnection of a member.

Events sequence

Application LaCOLLA
1. memberDisconnected(String groupId,String
userId)

2. The application receives the notification.

2. Events:

2.1.Use case newEvent

USE CASE New Event Notification
ACTORS UserAgent and applications.
PURPOSE Notify to the connected applications the event

received.
SUMMARY The UserAgent notifies to connected

applications the event.

Events sequence

Application LaCOLLA
1. newEvent(String groupId,Event evt)

2. The application receives the event



3. Group Administration:

3.1.Use case newInfoGroup

USE CASE Notificació d'Informació de Grup
ACTORS UserAgent and applications
PURPOSE Notifies to application the information of the

group.
SUMMARY The applications receives the requested group

information.

Events sequence

Application LaCOLLA
1. newInfoGroup(String userId, String groupId,
String aplicId, GroupInfo info)

2. The application receives the requested group
information.

4.Tasks:

4.1.Use case  Exception

USE CASE Exception
ACTORS UserAgent and applications
PURPOSE Notify the exception of a task being executed.

SUMMARY The application receives the task exception

Events sequence

Application LaCOLLA
1. exception(String groupId,String Message)

2.The application receives the exception

4.2.Use case  notifyStopTask

USE CASE Task Stop Notification
ACTORS UserAgent and applications
PURPOSE Notify the task stop.

SUMMARY The application receives the stop task
notification.

Events sequence



Application LaCOLLA
1. notifyStopTask(String  groupId,String idTask,
Object result)

2. The application receives the notification.

4.3.Use case  notifyTaskState

USE CASE Task State Notification
ACTORS UserAgent and applications
PURPOSE Notify the  task state

SUMMARY The application receives the task state

Events sequence

Application LaCOLLA
1. notifyTaskState(String groupId,String
idTask,String state,Object result)

2. The application receives the notification.

5. Applications state control:

5.1.Use case AppIsAlive

USE CASE Is application alive
ACTORS UserAgent and applications
PURPOSE Ask to the application its current state.

SUMMARY The UserAgent asks to the application its current
state. The application responds with true is
connected.

Events sequence

Application LaCOLLA
1. appIsAlive(String appID)

2.The application answers true.

6. Instant Message Service:

6.1.Use case newInstantMessage

USE CASE Instant MessageNotification
ACTORS UserAgent and applications



USE CASE Instant MessageNotification
PURPOSE Notify to applications the reception of an instant

message.
SUMMARY The application receives an instant message.

Events sequence

Application LaCOLLA
1. newInstantMessage(String groupId, String
userId, String destMemberId, Object message)

2.The application receives the message.



4.API operation contracts: 
Operation contracts describes the operations effects. The operation outputs and the states of the
information during the execution are also described. Insures the software reliability with
preconditions and postconditions.

API used by Applications:
That part contains the methods provided by LaCOLLA API an susceptible to be used by
applications.

1. Presence

• Authentication (login)
1.1.Contract login

OPERATION Login
PARAMETERS String groupId

String userId

String pswd

String gapaId

String gapaAdress

int gapaPort

String aplicHost

int aplicPort
SEMANTICS Identification process of an user in order to join

the group.
PRECONDITIONS All parameters are not null.  
POSTCONDITIONS The user is authenticated in the system. The

resources of the user are added to the resources
of the group. The application receives the
application identifier. Henceforth the user could
use LaCOLLA services. 

RESULT Returns the application identifier.

• Disconnection(logout)
1.2.Contract logout

OPERACIÓ Logout
PARÀMETRES String groupId

String userId

String aplicName
SEMÀNTICA Disconnects a member from the group.
PRECONDICIONS AplicName is the application identifier. All

parameters are not null.



POSTCONDICIONS The member is disconnected. Only can execute
the login operation.

SORTIDA No result.

•  List of connected  members  to the group(whoIsConnected)
1.2.Contract logout

OPERACIÓ whoIsConnected
PARÀMETRES String groupId
SEMÀNTICA Gets the list of connected members
PRECONDICIONS GroupId is not null
POSTCONDICIONS The member receives a list with the identifiers

of all connected members
SORTIDA List

2. Events.

• Disseminate Event. (disseminateEvent)
2.1.Contract disseminateEvent

OPERATION DisseminateEvent
PARAMETERS String groupId

Event evt
SEMANTICS An event is sent to all members of the group. In

the case that a member is not connected during
the message dissemination, the event will be
delivered  during the login process of that
member.

PRECONDITIONS All the parameters are not null. Event is the data
structure defined by LaCOLLA API and
contains information about the event to be
disseminated.

POSTCONDITIONS If the event is not stored in at least one RA it is
not considered as being disseminated. In that
case LaCOLLA retries to send the event a
configurable number of times. If it not success an
error message is returned.

The non-connected member will receive the
event during the connection process.

If any component connected to the group don't
receives the event. Eventually the event will be
received during a future synchronization or
consistency  session with one RA.

The events are stored permanently in any RA.



RESULT No return

• Events Related to an object (eventsRelatedTo)
2.2.Contract  eventsRelatedTo

OPERATION eventsRelatedTo
PARAMETERS String groupId

String objectId
SEMANTICS Lists all events related to an object.
PRECONDITIONS The object and the group must exists.
POSTCONDITIONS A list with all events related to an object is

created.
RESULT Return the list with all events related to an

object.

3. Objects:

• Put Object (putObject)
3.1.Contract putObject

OPERATION putObject
PARAMETERS ObjectLaCOLLA obj
SEMANTICS Store the object permanently in a repository of

LaCOLLA. The object will be available for the
rest of the members of the group.

The object will be replicated among the rest of
repositories.

PRECONDITIONS The parameters are not null.
POSTCONDITIONS If the event is not stored in at least one RA, the

object is not stored. In t hat case the object must
be retransmitted.

Once the object is stored the repository
disseminates an event notifying the new object.

The object is unique identified in the system. The
identifier is returned to the application.

RESULT The object descriptor is returned to the
application. It contains the objectId.

• Get Object  (getObject)
3.2.Contract getObject

OPERATION getObject
PARAMETERS ObjectLaCOLLA obj
SEMANTICS Get the stored object.



PRECONDITIONS The parameters are not null.
POSTCONDITIONS The application receives the object.
RESULT An input stream is received. The application

must read the binary object from that stream. 

• Get the information of the object (getInfoObject)
3.3.Contract getInfoObject

OPERATION getInfoObject
PARAMETERS String groupId

String objectId
SEMANTICS Get the information relative to an object. 
PRECONDITIONS The parameters are not null.
POSTCONDITIONS The application receives the required object.
RESULT An input stream is received. The application

must read the binary object from that stream. 

3.4.Contract removeObject

OPERATION removeObject
PARAMETERS String groupId

String objectId
SEMANTICS Remove a permanently stored object in

LaCOLLA
PRECONDITIONS The parameters are not null.
POSTCONDITIONS If the operation is not carried out in at least one

RA and an event generating the deletion of the
object is not generated, the operation is not
considered.

The repository sends an event informing about
the objects deletion. The repository itself,
removes any reference of the object.

The rest of component delete the object when
receive the event.

RESULT No result.

4. Group Administration:

• Add  Group (addGroup)
4.1.Contract addGroup

OPERATION AddGroup
PARAMETERS String userId

GroupInfo groupInfo



SEMANTICS Creation of a new group.

Authentication of the member to the new group.
PRECONDITIONS The parameters are not null.

groupInfo contains information of the group.
POSTCONDITIONS A new group is created with an unique identifier

and the resources of the group creator.

1. The creator is authenticated into the group.
RESULT Returns the groupId.

• Get Group Information (getInfoGroup)
4.2.Contract getInfoGroup

OPERATION getInfoGroup 
PARAMETERS String userId

String groupId

String aplicId
SEMANTICS Request the information relative to a group.
PRECONDITIONS The parameters are not null.

groupInfo contains information of the group.
POSTCONDITIONS The information of the group is notified

asynchronously by  newInfoGroup operation.
RESULT If the UserAgent has the information cached, it

is returned immediately. 

5. Members Administration:

• Add Member (addMember)
5.1.Contract addMember

OPERATION addMember
PARAMETERS String memberId

String groupId

Object memberInfo

String role

String username

String password

String emailAddress
SEMANTICS A member is invited to a group.
PRECONDITIONS UserId must belong to the group.
POSTCONDITIONS The group has one more member.



RESULT Returns the new memberId

• Get Member Information (getInfoMember)
5.4.Contract getInfoMember

OPERATION getInfoMember
PARAMETERS String memberId

String groupId
SEMANTICS Request information about a member.
PRECONDITIONS The parameters are not null.
POSTCONDITIONS A message to a GAPA is sent requesting the

desired information. The GAPA sends the
identifier of the object containing the
information. Then, the object is requested to a
RA and sent to the application.

RESULT No result.

6. Tasks:

• SubmitTask:
5.1.Contract submitTask

OPERATION submitTask
PARAMETERS byte[] xml,

String groupId
SEMANTICS A task is sent to execute.
PRECONDITIONS The group must exist
POSTCONDITIONS A new task is being execute in LaCOLLA
RESULT Returns the task identifier.

• StopTask:
5.2.Contract stopTask

OPERATION submitTask
PARAMETERS String idTask

String groupId
SEMANTICS Stop the task.
PRECONDITIONS The group must exist.
POSTCONDITIONS The task is stoped
RESULT No result.



• getTaskState:
5.3.Contract getTaskState

OPERATION getTaskState
PARAMETERS String idTask

String groupId
SEMANTICS Request the state of a task.
PRECONDITIONS The group must exist.
POSTCONDITIONS A TDA is requested about the state of a task
RESULT No result.

7. Instant Message Service:

• Send an Instant Message (sendInstantMessage)
7.1.Contract sendInstantMessage

OPERATION sendInstantMessage
PARAMETERS String memberId

String groupId

Object message

ArrayList targetList
SEMANTICS Send an instant message to a list of members of

the group.
PRECONDITIONS The parameters are not null. Message is the

message to be sent. TargetList is the destination
members list.

POSTCONDITIONS The members of the targetList receive the
message.

RESULT No result.

API used by UserAgent:
That part contains the methods provided by the application API and UserAgent will use them to
notify/deliver information to the application.

1. Presence:

• New Connected Member Notification. (newConnectedMember)
1.1.Contract newConnectedMember

OPERATION newConnectedMember



PARAMETERS String groupId

String userId

String memberId
SEMANTICS New connected member notification.
PRECONDITIONS Both parameters are not null.
POSTCONDITIONS A new member is connected to the group.
RESULT No result.

• Member Disconnected Notificationt (memberDisconnected)
1.2.Contract memberDisconnected

OPERATION memberDisconnected
PARAMETERS String groupId

String memberId
SEMANTICS Notify to the application the disconnection of a

member.
PRECONDITIONS Both parameters are not null.
POSTCONDITIONS The member is not connected to the group.
RESULT No result.

2. Events:

• New Event Notification (newEvent) 
2.1.Contract newEvent

OPERATION newEvent
PARAMETERS String groupId

Event  event
SEMANTICS Notify to the application a new event.
PRECONDITIONS Both parameters are not null.

Event is a data structure provided by LaCOLLA.
POSTCONDITIONS The application receives the event.
RESULT No result.

3. Group Administration:

• Group Information Notification(newInfoGroup) 
3.1.Contract newInfoGroup

OPERATION newInfoGroup 



PARAMETERS String userId

String groupId

String aplicId

GroupInfo info
SEMANTICS Notifies to the application the group

informationBoth parameters are not null.
PRECONDITIONS The parameters are not null. A getInfoGroup

operation has been invoked.
POSTCONDITIONS The application receives the group information.
RESULT No result.

4. Tasks:

• Exception
4.1.Contract exception

OPERATION exception
PARAMETERS String groupId

String message
SEMANTICS Notification of a task exception.
PRECONDITIONS Both parameters are not null.
POSTCONDITIONS The application receives the exception.
RESULT No result.

• Task Stop Notification
4.2.Contract notifyStopTask

OPERATION notifyStopTask
PARAMETERS String groupId

String idTask

String result
SEMANTICS Notifies the task stop.
PRECONDITIONS The parameters are not null.
POSTCONDITIONS The application receives the task result.
RESULT No result.

• Task State Notification
4.3.Contract notifyTaskState

OPERATION notifyTaskState



PARAMETERS String groupId

String idTask

String result

String State
SEMANTICS Notifies the task state.
PRECONDITIONS The parameters are not null.
POSTCONDITIONS The application receives the task state.
RESULT No result.

5. Applications state control:

• State request service (appIsAlive):
5.1.Contract appIsAlive

OPERATION appIsAlive
PARAMETERS String appId
SEMANTICS LaCOLLA request the application state.
PRECONDITIONS The application exists.

POSTCONDITIONS The application remains connected if the result is
true.

RESULT Boolean.

6. Instant Message Service:

• Instant message reception (newInstantMessage):
6.1.Contract newInstantMessage

OPERATION newInstantMessage
PARAMETERS String groupId

String userId

String destMemberId

Object message
SEMANTICS Reception of an instant message.
PRECONDITIONS The parameters are not null. Message contains

the message text.
POSTCONDITIONS The application receives the instant message.
RESULT No result.



5.LaCOLLA data structures description:
That section describes the most important data structures that applications may use when use
LaCOLLA. For each of the data structures, a description of the main attributes, a constructor
description and a detailed methods description is provided.

Description of the objects used by LaCOLLA:
Each object is described in LaCOLLA by its corresponding descriptor. The descriptor is the
ObjectLaCOLLA object. The ObjectLaCOLLA contains information about the object to be stored,
recovered, removed,..... Each application must describe the objects to store in LaCOLLA using the
provided descriptor.

Each descriptor contains a reference to a local file containing the “real” information to be stored.
For instance, if we want to store a mp3 file, it is necessary to indicate in the descriptor the local file
containing such information. Moreover another file must be set in the descriptor. The infoObject file
contains relevant information of the real object. The infoObject is stored together with the object.

Attributes

String objId
           

Unique object identifier of the object. It is
generated by LaCOLLA when the object is stored
in the system. Is returned inside the
ObjectLaCOLLA returned by the operation
putObject

Date date
           The creation date of the object.

String description_
           Any user defined description.

long sz The size in bytes of the object to be
stored/recovered.

String grpId The group identifier where the object must be
stored/deleted.

 File file The local file containing the object to be stored.

 File fileInfoObject The local file containing the information of the
object to be stored.

String versionId The version of the object

Constructor
ObjectLaCOLLA(String objId, Date date, String description_,
String grpId, long sz) 
           
ObjectLaCOLLA(String objId, Date date, String description_,
String grpId, long sz, String path_) 
           
ObjectLaCOLLA(String objId, String obj, long sz) 
           

  



Methods
 Date getCreationDate() 

           
Returns the creation date of the
object.

 String getDescription() 
           Sets the description of the object

 File getFile() 
           

Return the  file containing the object
to be stored.

 String getFileName() 
           Returns the filename

 String getGroupId() 
           Returns the groupId of the object

 Object getInfoObject() 
           

Returns the file containing
information about the object

 String getObjectId() 
           Returns the objectId.

 long getSize() 
           Returns the object size

 String getVersionId() 
           Returns the versionId of the object.

 void setCreationDate(Date creationDat
e_) 
           

Sets the creation date.

 void setDescription(String desc) 
           Sets the object description

 void setFile(File ffile_) 
           Sets the file.

 void setGroupId(String groupId) 
           Sets the groupId.

 void setInfoObject(Object infoObject) 
           

Sets the file containing the object's
information.

 void setObjectId(String objId) 
           Sets the objectId

 void setSize(long size_) 
           Sets the object's size

 void setVersionId(String versionId) 
           Sets the versionId of the object.

Example:

The next example presents the usage of the ObjectLaCOLLA structure. In the example we consider
that the information to be stored permanently in LaCOLLA is in a file in the local disc named
“foo.dat”. Also we consider the existence of a file named “foo_infoObject.dat” containing some
information of the object to be stored.

Eventually the ObjectLaCOLLA is created. The parameters are the file name (in this example



foo.dat), the current time, the textual description of the object to be stored, the group identifier
where the object must be stored and finally the file length.

At the end, the  file and the infoObject file are set and the putObject operation is invoked. The result
of that operation is the same ObjectLaCOLLA containing the objectId generated by LaCOLLA.

The putObject operation is invoked to store the object. The object descriptor is returned.

The next part of the example presents the way to get an object stored in LaCOLLA. The descriptor
of the object to be got could be obtained either as a result of a putObject operation or by the specific
objectLaCOLLA creation. (in that case we must note that the objectId is required and must be set in
the OjectLaCOLLA).

The getObject operation returns an InetSocketAddres. Using that InetSocketAddress LaCOLLA
sends the bytes of the object to the application. The purpose of the class Receiver (provided in
LaCOLLA distribution) is to read the object and to store it in the local disk. The parameters are the
object descriptor, the InetSocketAddres, the folder where the object must be placed and the file
name where the data must be set.

File file=new File("foo.dat");
File fileInfoObject= new File("foo_infoObject.dat");
ObjectLaCOLLA obj= new ObjectLaCOLLA(file.getName(), 

Calendar.getInstance().getTime(),
"foo description", groupId, file.length());

obj.setFile(file);
obj.setInfoObject(fileInfoObject);
ObjectLaCOLLA o = api.putObject(obj);

//After a few seconds the object is stored. 
//it is possible to get the object.
InetSocketAddress isa =(InetSocketAddress)api.getObject(o);
System.out.println("The received ISA: " + isa);

if (isa!=null){
Receiver rec=new Receiver(o,isa,"home_directory","foo-received.dat");
rec.start();
System.out.println("Object received.”);

}
else{

System.out.println("isa is null- the object cannot be obtained – Please 
  retry later");

}//else

...
Example 1. ObjectLaCOLLA



Description of the events used by LaCOLLA:
An event is something that takes place; an occurrence, something that an user wants to
communicate to the rest of community.  

Whenever something occurs in LaCOLLA an event is disseminated in order to communicate to the
listeners what happened. The event itself is handled by the application and consequently treated.

Usually a member wants to notify something to the rest of the users in the group. For that purpose
an event can be disseminated.

The events disseminated by LaCOLLA are described as follows:

Attributes

String applicationId
The application identifier. It is
returned in the login operation.Only
it is set if the event is generated by
an application.

String userId,
The user identifier. It is returned
when the new connected member
notification is received.

String groupId, The groupId where the event must
be disseminated.

GroupInfo infoGroup
The group information object. Only
accessible when the event received
notifies the new group information.

String memberInfo The objectId of the object containing
the member information.

String objectId Only used in the case that the event
is related to an object.

String event, The event itself. The text
disseminated.

String componentId
The component who has generated
the event. Only in the case that the
event has been generated by a
component.

Int eventType The type of the event. See
description below.

Constructor
Event() 
           
Event(String userId,
String applicationId, String groupId,
String eventId, Timestamp timestamp,
String objectId, int eventType,
String event, String componentId) 
           



  

Methods
 String getApplicationId() 

           Returns the application identifier.

 String getComponentId() 
           

Returns the source component
identifier.

 String getEvent() 
           Returns the text of the event

int getEventType() 
           Returns the type of the event

 String getEventId() 
           Returns the event Id.

 String getGroupId() 
           Returns the GroupId.

 GroupInfo getGroupInfo() 
           

Returns the GroupInfo. Only if the
event notifies the new group
information.

 String getMemberInfo() 
           

Returns the identifier of the object
containing the member information.

 String getObjectId() 
           

Returns the objectId related to the
event.

 String getUserId() 
           

Return the user who has generated
the event.

 void setApplicationId(String applica
tionId) 
           

Sets the application Id who has
generated the event.

 void setComponentId(String component
Id) 
           

Sets the component Id who has
generated the event

 void setEvent(String event) 
           Sets the text to disseminate

 void setEventType(int eventType) 
           Sets the type of the event

 void setEventId(String eventId) 
           Sets the event identifier

 void setGroupId(String groupId) 
           

Sets the group where the event has
to be disseminated.

 void setGroupInfo(GroupInfo groupInf
o) 
           

Sets the group information.

 void setMemberInfo(String memberInfo
) 
           

Sets the member information



 void setObjectId(String objectId) 
           Sets the object related to the event.

 void setUserId(String userId) 
           

Sets the memberID of the sender of
the event.

Example:

In the following example we invoke the login operation of LaCOLLA. As a result of this operation
we obtain the application identifier of our application. Furthermore we set our userId as “foo”.
Eventually the Event structure is created. The parameters are, the user identifier, the application
identifier, the group identifier, the event identifier, and the text of the event. The rest of parameters
must be null.
Note that the event identifier is generated by invoking the generateID operation of the Identificator
class provided by LaCOLLA distribution.

Event classification:
Events are classified as follow:

Type of Event Description

M
od

ify
 st

at
e 

ev
en

ts

eventNewObject
This event is received when a
new object is stored in
LaCOLLA.

eventNewReplica
This event is received when a
new replica of an stored object
is created.

eventDeleteObject
This event is received when an
object is deleted from
LaCOLLA.

eventDeleteReplica
This event is received when
replica of an object is deleted
from LaCOLLA.

eventNewMember
This event is received when a
new Member is invited to the
group.

Sting  aplicIdentifier=api.login(.....)
String userId=new String(”foo”);
Event evt = new Event(userId,aplicIdentifier,groupId,

(String)Identificator.generateID("EVENT",""),
null,null,null,"The event text to be set",null);

Example 2. Event



Type of Event Description
In

fo
rm

at
iv

e 
ev

en
ts

eventRead
This event informs that
someone has read an object in
LaCOLLA.

eventNewConnectedMember This event informs about a new
connected member.

eventMemberDisconnected This event informs about a
member has disconnected.

eventApplication

This type of event is used by
applications. An application
would need to disseminate an
event to the group informing
about whatever has happened.
This type of event is never used
by LaCOLLA, so if an
application receives that kind of
event, it has been generated by
another application connected
to LaCOLLA.

Events types can be accessed by the Api function events.getEventType(). The types of events are
defined i the class LaColla.core.util.constant.

The type of the event is always set by LaCOLLA. Whether the event is an application event or not,
the task of classifying the event is done by the UA, hence the application will never need to classify
the event but may need to read the type of the event. 

Description of the GroupInfo structure used by LaCOLLA:
This structure is used to describe information about a group. The creator of the group must specify
that information at creation time. When the addGroup operation is called, the group information
must be provided. 

Attributes
String groupName The group name.
String member The creator of the group.
Date fundationDate The foundation date.

Constructor
GroupInfo() 
           
GroupInfo(String groupName, String member, Date fundationDate) 
           

  

Methods



 Date getFundationDate() 
           Returns the creation date of the group

 String getGroupName() 
           Returns the name of the group

 ArrayList getMembers() 
           

Returns a list of the members of the
group

 void setFundationDate(Date funda
tionDate) 
           

Sets the fundation date of the group.

 void setGroupName(String groupNa
me) 
           

Sets the name of the group.

 void setMembers(ArrayList member
s) 
           

Sets the list of members of the group.

Example:

In the next example we create a GroupInfo structure. We set the current date as a creation date and
we set the name of the group, in that case, “foo-group”. Finally we invoke the addGroup operation
of  LaCOLLA API with our memberId and the information of the group to be created. The new
groupId is returned.

GroupInfo gi=new GroupInfo();
gi.setFundationDate(Calendar.getInstance().getTime());
gi.setGroupName("foo-group");
String groupId=api.addGroup("member#dd7e5490bc0810048ef186aa17efe6e6#",gi);

Example 3. GroupInfo



6.API usage example. 
This example introduces to the developer the best way of starting the construction of an application
using the API of LaCOLLA. In that example, it is explained how to connect our application with
LaCOLLA API, also it shows how to get the API of LaCOLLA in our application and how to
invoke the methods provided by them. Eventually the example presents a way to implement the
ApplicationsSideApi an to make it available for the local LaCOLLA agent.

1.Setup in the classpath of the project LaCOLLA .jar files.

2.Create a package for the application.
For example: package Apps.pasApas;

3.Create a subdirectory API in the package of our application.
For example: package Apps.pasApas.API;

4.Create the class ApplicationsSideApiImpl inside the package API

5.Implement the methods of the interface ApplicationSideApi.

package Apps.pasApas.Api;
import java.rmi.RemoteException;
import LaColla.Api.ApplicationsSideApi;

public class ApplicationsSideApiImpl 
extends java.rmi.server.UnicastRemoteObject

implements ApplicationsSideApi{
/**
 * @throws RemoteException
 */
protected ApplicationsSideApiImpl() throws RemoteException {

super();
}

}
Example 4. ApplicationsSideApi



6.Create a new class for the application.

7.Create a method to resolve LaCOLLA API.

package Apps.pasApas;
import java.net.MalformedURLException;
import java.rmi.Naming;
import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import LaColla.Api.Api;

public class pasApas {
//constructor
public pasApas(){
}

}
Example 6. Applications Class

public void newConnectedMember(String groupId, String userId) 
throws RemoteException 

{
//definir el comportament desitjat del mètode
System.out.println("El nou membre connectat al grup 

"+groupId+ " és: " + userId);
}

public void memberDisconnected(String groupId, String userId) 
throws RemoteException 

{
//definir el comportament desitjat del mètode

}

public void newEvent(String groupId, Event evt) 
throws RemoteException 

{
//definir el comportament desitjat del mètode

}

Example 5. Methods redefinition



8.Create a method to publish the ApplictionsSideApi redefined on
steps 6 and 7.

//constructor
public pasApas(){

//...
}
//API LaCOLLA resolve method
public API resolveApiLaCOLLA(String host, long port){

API api=null;
try {

api = (API)Naming.lookup("//"+host+":"+port+"/API");

}catch (MalformedURLException murle) {
System.out.println("MalformedURLException: " + murle);

}
catch (RemoteException re) {

System.out.println("RemoteException: " + re);
}
catch (NotBoundException nbe) {

System.out.println("NotBoundException: " + nbe);
}

return api;
}

}
Example 7. API resolve methodology



package Apps.pasApas;
import java.net.MalformedURLException;
import java.rmi.Naming;
import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import Apps.pasApas.API.ApplicationsSideApiImpl;
import LaColla.Api.Api;
public class pasApas {

//constructor
public pasApas(){

//...
}

//API LaCOLLA resolve method
public API resolveApiLaCOLLA(String host, long port){

//...
}

public ApplicationsSideApiImpl 
bindApplicationsSideApi(String host, int port){
ApplicationsSideApiImpl aplicapi=null;
try {

java.rmi.registry.LocateRegistry.createRegistry(port);
aplicapi = new ApplicationsSideApiImpl();
Registry registry = 

LocateRegistry.getRegistry(host,port);
registry.rebind("/AplicationsSideApi", aplicapi);

} catch (Exception e) { 
e.printStackTrace();

}

return aplicapi;
}

Example 8. ApplicationsSideApi binding



9.API method invocation example.
Taula  . Init  method

10.Compile the code

11.Execute:
 rmic.exe Apps.pasApas.Api.ApplicationsSideApiImpl.

12.Execute the new application and the configuration of LaCOLLA.

• Create an execution file.

package Apps.pasApas;
import java.net.MalformedURLException;
import java.rmi.Naming;
import java.rmi.NotBoundException;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import Apps.pasApas.API.ApplicationsSideApiImpl;
import LaColla.Api.Api;
public class pasApas {

//constructor
public pasApas(){

//...
}

//API LaCOLLA resolve method
public Api resolveApiLaCOLLA(String host, long port){

//...
}

public ApplicationsSideApiImpl 
bindApplicationsSideApi(String host, int port){
//...

}

public void init(String host,String localHost,
int port, int localPort){

ApplicationsSideApiImpl localApi;
Api LaCOLLAApi;
String appId;
//fem bind de l'ApplicationsSideApi
localApi=this.bindApplicationsSideApi(localHost,localPort);
//resolem l'API de LaCOLLA
LaCOLLAApi=this.resolveApiLaCOLLA(host,port);
//podem invocar algun mètode de l'API
//LOGIN
appId=LaCOLLAApi.login(

groupId,userId,password,gapaId,gapaHost,
gapaPort,localHost,localPort);

//...
}

}
Example 9. Init method



For example: pasApas.bat
• Edit pasApas.bat

make copy&paste from uoc1.bat created on the step 2.
Modify the last line of the file. 
Write--> java Apps.pasApas.pasApas #params

Where #params are the application parameters.

Also you would find a set of templates in “C:\LaCOLLA
Middleware\LaCOLLA\doc\templates”


