
Creating an application for LaCOLLA 1.0.X

Author: Enric Jaen

Date: March 13th 2007

Table of Contents
1. Introduction..1
2. Application structure...1
3. Initialization code...2
4. User Login..3
5. Application callback code...4
6. Execution of the PUTGO application ..4
7. API status ...6

1. Introduction
This document explains how to write a simple application. It is assumed that LaCOLLA is already
installed. For a guide about how to install LaCOLLA see the download section in the web side.

The demo application described here is named PutGo, and the source code can be downloaded from
the web side:

http://lacolla.uoc.edu/cgi-
bin/viewvc.cgi/LaCOLLA_applications/Applications/putgo/

2. Application structure

An application written in LaColla 1.0.x contains at least the following four Java classes. Only the
two first are application-dependent. The other two are explained for a better understanding of the
application functioning.

● Main applicacion class (application-dependent)
The main class creates an instance of the ApplicationSideApiServer class, and it
must discover the endpoint of LaColla API by invoking the resolveApi()method. After
that, the application can login and invoke operations on LaColla. See section 3 for a detailed
description.

● Api.ApplicationSideApiImpl (application-dependent)
This class implements the ApplicationSideApi interface, and must be written by the
application developer. It handles the callback methods (i.e notifications) that LaColla sends

to the application during its lifetime. See section 5 for a detailed description.

● Api.ApplicationSideApiServer (application-independent)
This is a helper application, therefore the application programmer won't need to modify it.
The constructor of this class registers (i.e. binds) the ApplicationSideApiImpl class
into the RMI registry. The name of the application has an URI as follows:

“/ApplicationSideApi” + <applicationPort>

Where <applicationPort> is given as a constructor parameter. The RMI registry may
be running in another host, which is also given as a constructor parameter. The RMI registry
must be listening on port 1099.

This class also contains the resolveApi() method to discover the endpoint of LaCOLLA
API. (LaColla.Api.Api class). The name of LaColla API has an URI as follows:

“/Api”+<apiPort>

Where <apiPort> is given as an application parameter, and it is defined by an UserAgent of
LaColla [ref].

● Api.ApplicationSideApiBase (application-independent)
This class is internally used by the Api.ApplicationSideApiServer class to handle the
summary of events generated by LaCOLLA, and to instantiate the class that handles the
events.

3. Initialization code
The following diagram summaries the startup of the application. The two bolded classes are the
ones developed by the programmer.

LC ApiImplRMI
Registry

Main Api.ASAS Api.ASAImpl

new

rebind

new

resolveApi
lookup

login

event

LaColla

login

Api.ASABase

new

The source code of the main application class is listed next. Notice the name of the
application in bold.

package Apps.PutGo;

import Apps.PutGo.Api.ApplicationsSideApiServer;
import Apps.PutGo.Api.ApplicationsSideApiImpl;
import LaColla.Api.Api;

public class PutGo {

 private static final int RMIport = 11099;
 private static String appIP; //application IP

 private static int appPort; //application port
 private static int apiPort; //LaCOLLA API port
 private static String username="root";
 private static String passwd="root";
 private static String groupId="hola";

 public static void main(String[] args) {

 try {
 appIP =InetAddress.getLocalHost().getHostAddress();
 } catch (UnknownHostException e1) {
 e1.printStackTrace();
 }

 apiPort=Integer.parseInt(args[0]);
 appPort=Integer.parseInt(args[1]);

 ApplicationsSideApiServer asas=new

 ApplicationsSideApiServer(appIP, appPort);

 Api api = asas.resolveApi(apiPort);

...
 } //end main

 } //end class

4. User Login
Before using LaCOLLA, the user must first login into LaCOLLA. The code is as follows:

int gapaIP = appIP;
int gapaPort = 2001;

 String apiid = api.login(
groupId,
username,
passwd,
gapaIP,
gapaPort,
appIP,
appPort,
asas.readSummary());

5. Application callback code
The developer must implement the code of the LaCOLLA callback operations in a file named
ApplicationsSideApiImpl.java. Its structure is as follows. Notice that the package
includes the application name.

package Apps.PutGo.Api;

import LaColla.Api.ApplicationsSideApi;
import LaColla.core.data.Event;

public class ApplicationsSideApiImpl implements ApplicationsSideApi{

private String memberId;

 public ApplicationsSideApiImpl() throws RemoteException {
 super();
 }

public void newConnectedMember(
String groupId, String userId, String memberId)

throws RemoteException {
 this.memberId=memberId;

 ... //your code
 }

public void newEvent(
String groupId, Event evt)
throws RemoteException {

 ... //your code
 }

//rest of callback operations..

} //end class

6. Execution of the PUTGO application
We assume with respect LACOLLA that:

● Is already running (ant lacolla),

● The RA has a user named admin registered. (see member1.ini)

● The UA has an API listening in port 19001 (see UA1.ini)

The putgo ANT target has the following two parameters:

<target name="putgo" depends="build">

...

 <arg value="19001"/> <-- API PORT

 <arg value="4321"/> <-- APPLICATION PORT

</target>

To run the application type:

$ant putgo

 [java] PUTGO: 127.0.0.1
 [java] Host= 127.0.0.1 appPort=4321 LaCOLLAport= 19001
 [java] creada instancia de AplicationsSideApi
 [java] rmiport=11099
 [java] name published /ApplicationsSideApi4321
 [java] ******************
 [java] *List of Commands*
 [java]
 [java] exit
 [java] login
 [java] logout
 [java] putobject
 [java] getobject
 [java] devent
 [java] erelated
 [java] rmobject
 [java] addgrp
 [java] addusr
 [java] instmsg
 [java] getinfo
 [java] listcmd
 [java] please insert a command:

Then type login:

login
 [java] log4j:WARN No appenders could be found for logger
(LaColla.core.util.Identificator).
 [java] log4j:WARN Please initialize the log4j system properly.
 [java] Starting Tyrex Version 1.0.3
 [java] Original code is Copyright (c) 1999-2001, Intalio, Inc. All Rights
Reserved. Contributions by MetaBoss team are Copyright (c) 2003-2005, Softaris
Pty. Ltd. All Rights Reserved.

 [java] your command: login
 [java] LOGIN
(1) [java] username=admin
 [java] java.io.FileNotFoundException: lc_events.out (No such file or
directory)
 [java] tss=
 [java] allReceived: {}
 [java] nonConsecutive: {}
 [java] java.io.FileNotFoundException: lc_events.out (No such file or
directory)
(2) [java] Login correcte: App#28b0f780c21a10048c06e7e96d09e474#
(3) newConnectedMember hola admin member#0#
(4) newEvent <<UA#bd327eb0bf3110048958f52c8803bee2#,1>,null,201,hola,new
connected Member member#0#,0>
 [java] memberid=member#0#
 [java] please insert a command:

Notice in the previous output that (1) the user admin does the login. As a response the application
(2) gets an Application ID, (3) receives a newConnectedMember event (see section 5), and (4)

receives a newEvent also indicating a new connected member (see section 5). Should LaCOLLA
have more pending events, the application will also receive them.

Note: don't worry about the FileNotFoundException; it is a logged exception that indicates that
there is no previous events stored. This summary is stored in the file lc_events.out.

After playing with the application type logout and/or exit.

logout
 [java] your command: logout
 [java] please insert a command:
exit
 [java] your command: exit

7. API status
You can obtain the current status of the LaCOLLA API from this URL:

 http://lacolla.uoc.edu/lacolla/releases/1.0.x/doc/api-status.html

	1. Introduction
	2. Application structure
	3. Initialization code
	4. User Login
	5. Application callback code
	6. Execution of the PUTGO application
	7. API status

