An architecture for
decentralized service
deployment

Daniel Lazaro Iglesias
Joan Manuel Marques
Josep Jorba Esteve
Universitat Oberta de Catalunya



Summary

O Introduction
0 Reqguirements
O Architecture
O Conclusions




Introduction

O Virtual community of users who share
common interests

O They want to offer services

= To the members of the community: activity
coordination, file sharing, etc.

m To the rest of the world: information about the
community.

= Examples: file sharing, shared calendar, web
publishing, Content Management Systems
(CMS), wikis, forums, blogs, audio and video
streaming, etc.




Introduction

0 The community doesn't have a single
provider which satisfies its needs of
resources. It needs to:
= Aggregate the resources of different sources
= Use resources provided by the members of the.

community.

O Resources must be aggregated easily.




Characteristics

O Scale:
= Potentially big groups.
= Members scattered around the world.

0 Users may not have technical knowledge
= Self-* properties will be needed

0 Members provides their own resources.
This implies:
= Dynamism
] Heterogenious resources




Requirements

0 Community self-sufficiency
O Individual autonomy

O Decentralization

O Scalability

O
O
O

Heterogeneity
—ault tolerance

_ocation transparency

O Self-management



Architecture

O Layered
architecture (grid-

Service deployment

I I ke) ] Collective

. Fab riC Resource Persistence Publish/

prospector module subscribe
= Connectivity

= Resource
Resource
il CO”eCtlve description

Remote

Resource execution

Multicast

Connectivity

Overlay network

Local storage Fabric Local execution




Fabric

0 Nodes must offer methods for:
= Local storage
m Local execution

0 Common interfaces to deal with
heterogeneity.

0 Each member Is free to offer resources at
will.

O At this level, methods can even control
access to a pool of resources (cluster, sub-
group, etc). To the upper layers, it is seen
as a single node with a standard interface.




Connectivity

O This layer forms an overlay network:

= DHTs satisfy our requirements (scalable,
decentralized, etc.)

= We will use common DHT operations so
our system can be ported to many DHTSs.
o This level will also provide multicast
messaging
= Many mechanism for multicasting in
DHTs exist.

= Our system should work with any
multicast system implemented over a
DHT.




Resource

O Language to describe resources.

= Many languages exist:
Resource Specification Language (RSL)
Job Description Document (JDD)
Job Submission Description Language (JSDL)

O Mechanism to control remote
execution.
= Globus' GRAM
= OGSA's execution management

= We can adapt these mechanisms for our
system



Dani
Sticky Note
Unmarked set by Dani


Collective

o Components which allow the collective use
of the resources.
= Publish/subscribe
= Resource prospector
= Persistence module
= Service deployment module




Publish /subscribe

O Type-based

= Hermes: each type is assigned to a node of the
DHT, which is the root of a Scribe-like multicast
tree.
o Content-based
= Events are defined by attributes.

= Clients subscribe to a range of values of each
attribute.

= Many approaches consider different degrees of
flexibility for subscriptions




Resource prospector

O Looks for resources that fulfill a certain
specification.

O To accomplish this, the resource
prospectors present in the community keep
a distributed index of resources.

O They must perform a range search.
Systems that do this:

= Willow
m SDIMS
m Cone




Persistence module

O Stores objects distributedly.
= This is the typical functionality of DHTSs.

O We need some more sophisticated
functionalities:
= Store mutable data

Store the state of services.
P2P filesystems.

= Balance loading
Virtual servers




Service deployment module

o Main functionality of the system.

O Uses the other components to implement
Its mechanisms.

O It must keep the services available at all
times (iIf provided resources are sufficient).
= Stateless services.

m Stateful services with some limitations.

Persistance module will provide some methods to store
state explicitly.




Service deployment

O Subcomponents:

= Service deployer: decides number of replicas
according to availability required, and controls
the overall deployment of the service.

m Service allocator: finds nodes to execute the
service and starts remote execution.

= Service self-healing: reallocates services from
failed nodes.

= Service self-tuning: creates or destroys replicas
to maintain the availability of the service and
the performance of the virtual community.




Service deployment

O Subcomponents:

= Service self-configuration: reacts to nodes
joining and leaving and reallocates services In
the most convenient way.

= Service client: allows users to find services and
contact them. Different communication patterns
must be possible:
Transparent access to a service
Access to a specific replica
Others




Conclusions and future work

0 We have presented an architecture for
decentralized service deployment.

O Many components can be implemented with
existent state-of-the-art technologies.

O Future work:

= Precisely design the mechanisms of the
Collective layer (service deployment, resource
prospector, persistence module).

= Refine the requirements of the upper layer for
the lower ones.




	An architecture for decentralized service deployment
	Summary
	Introduction
	Introduction
	Characteristics
	Requirements
	Architecture
	Fabric
	Connectivity
	Resource
	Collective
	Publish/subscribe
	Resource prospector
	Persistence module
	Service deployment module
	Service deployment
	Service deployment	
	Conclusions and future work

