
An architecture for 
decentralized service 

deployment

Daniel Lázaro Iglesias
Joan Manuel Marquès
Josep Jorba Esteve

Universitat Oberta de Catalunya



Summary

Introduction
Requirements
Architecture
Conclusions



Introduction

Virtual community of users who share 
common interests
They want to offer services

To the members of the community: activity 
coordination, file sharing, etc.
To the rest of the world: information about the 
community.
Examples: file sharing, shared calendar, web 
publishing, Content Management Systems 
(CMS), wikis, forums, blogs, audio and video 
streaming, etc.



Introduction

The community doesn't have a single 
provider which satisfies its needs of 
resources. It needs to:

Aggregate the resources of different sources
Use resources provided by the members of the. 
community.

Resources must be aggregated easily.



Characteristics
Scale:

Potentially big groups.
Members scattered around the world.

Users may not have technical knowledge
Self-* properties will be needed

Members provides their own resources. 
This implies:

Dynamism
Heterogenious resources



Requirements

Community self-sufficiency
Individual autonomy
Decentralization
Scalability
Heterogeneity
Fault tolerance
Location transparency
Self-management 



Architecture

Layered 
architecture (grid-
like).

Fabric
Connectivity
Resource
Collective



Fabric

Nodes must offer methods for:
Local storage
Local execution

Common interfaces to deal with 
heterogeneity.
Each member is free to offer resources at 
will.
At this level, methods can even control 
access to a pool of resources (cluster, sub-
group, etc). To the upper layers, it is seen 
as a single node with a standard interface.



Connectivity

This layer forms an overlay network:
DHTs satisfy our requirements (scalable, 
decentralized, etc.)
We will use common DHT operations so 
our system can be ported to many DHTs.

This level will also provide multicast 
messaging

Many mechanism for multicasting in 
DHTs exist.
Our system should work with any 
multicast system implemented over a 
DHT.



Resource

Language to describe resources.
Many languages exist: 

Resource Specification Language (RSL)
Job Description Document (JDD)
Job Submission Description Language (JSDL)

Mechanism to control remote 
execution.

Globus' GRAM
OGSA's execution management
We can adapt these mechanisms for our 
system

Dani
Sticky Note
Unmarked set by Dani



Collective

Components which allow the collective use 
of the resources.

Publish/subscribe
Resource prospector
Persistence module
Service deployment module



Publish/subscribe

Type-based
Hermes: each type is assigned to a node of the 
DHT, which is the root of a Scribe-like multicast 
tree.

Content-based
Events are defined by attributes.
Clients subscribe to a range of values of each 
attribute.
Many approaches consider different degrees of 
flexibility for subscriptions



Resource prospector

Looks for resources that fulfill a certain 
specification.
To accomplish this, the resource 
prospectors present in the community keep 
a distributed index of resources.
They must perform a range search. 
Systems that do this:

Willow
SDIMS
Cone



Persistence module

Stores objects distributedly.
This is the typical functionality of DHTs.

We need some more sophisticated 
functionalities:

Store mutable data
Store the state of services.
P2P filesystems.

Balance loading
Virtual servers



Service deployment module

Main functionality of the system.
Uses the other components to implement 
its mechanisms.
It must keep the services available at all 
times (if provided resources are sufficient).

Stateless services.
Stateful services with some limitations.

Persistance module will provide some methods to store 
state explicitly.



Service deployment

Subcomponents:
Service deployer: decides number of replicas 
according to availability required, and controls 
the overall deployment of the service.
Service allocator: finds nodes to execute the 
service and starts remote execution.
Service self-healing: reallocates services from 
failed nodes.
Service self-tuning: creates or destroys replicas 
to maintain the availability of the service and 
the performance of the virtual community.



Service deployment

Subcomponents:
Service self-configuration: reacts to nodes 
joining and leaving and reallocates services in 
the most convenient way.
Service client: allows users to find services and 
contact them. Different communication patterns 
must be possible:

Transparent access to a service
Access to a specific replica
Others



Conclusions and future work

We have presented an architecture for 
decentralized service deployment.
Many components can be implemented with 
existent state-of-the-art technologies.
Future work:

Precisely design the mechanisms of the 
Collective layer (service deployment, resource 
prospector, persistence module).
Refine the requirements of the upper layer for 
the lower ones.


	An architecture for decentralized service deployment
	Summary
	Introduction
	Introduction
	Characteristics
	Requirements
	Architecture
	Fabric
	Connectivity
	Resource
	Collective
	Publish/subscribe
	Resource prospector
	Persistence module
	Service deployment module
	Service deployment
	Service deployment	
	Conclusions and future work

