
DyMRA: Dynamic Market Deployment for

Decentralized Resource Allocation�

Daniel Lázaro, Xavier Vilajosana, and Joan Manuel Marquès

Universitat Oberta de Catalunya
{dlazaroi,xvilajosana,jmarquesp}@uoc.edu

Abstract. The workload supported by Virtual Organizations (VO) is
limited by the quantity of available resources. VOs with scarce resources
or peer-to-peer based VOs — due to the dynamicity of available resources
— may need extra resources to carry out a given task. Conversely, many
Internet-connected computers have surplus bandwidth, storage and com-
putational resources. We face those tradeoffs by enabling VOs to col-
lect and aggregate surplus resources and provide them with availability
guarantees to other VOs. This paper presents DyMRA, a decentralized
resource allocation system based on markets that allows inter-VO re-
source allocation. DyMRA is specially designed for dynamic and peer-
to-peer environments, where the autonomy of participants to disconnect
resources at any time and its decentralized nature requires the capacity
to dynamically reallocate resources and services that manage the overall
system. DyMRA is built on top of LaCOLLA, a peer-to-peer middleware
that allows a group of users to share resources in a collaborative manner.
We present the design, architecture and validation of our proposal.

1 Introduction

Internet has fostered the proliferation of virtual communities that are generally
formed by users that have common goals and need to collaborate to achieve their
technological or business objectives. Virtual communities are managed as virtual
organizations1 (VO) that require computational resources to satisfy the needs of
members’ applications.Besides, these requirementsmaytypicallyvaryover the life-
time of the virtual organizations due to dynamicity and spontaneous load surges.

Generally, VO resources are supplied by one of the following sources. a) re-
sources may physically belong to the VO. b) members may contribute resources
in benefit of the community, as is the case of non-profit organizations such as
seti@home [1]. And c), users may join resources in a cooperative way that results
in a benefit of all the participants. An example of such kind of systems is the
peer-to-peer file sharing system Tribler [2].

Whilst the resources within a VO may be sometimes insufficient to satisfy
QoS requirements under unexpected load surges, high level of dynamicity of its
� Work supported by MCYT-TSI2005-08225-C07-05 and Grid4All(IST-2006-034567).
1 For the purpose of this paper, we consider that a virtual organization (VO) is a group

of individuals or institutions who share resources and services for a common goal.

R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM 2007 Ws, Part I, LNCS 4805, pp. 53–63, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

54 D. Lázaro, X. Vilajosana, and J.M. Marquès

members or unpredictable failures, many other Internet-connected computers
have surplus bandwidth, storage and computations resources. This opens chal-
lenging opportunities to promote inter-VO resource allocation. In other words,
a VO could aggregate their surplus resources and offer them to other VOs.

In this paper we address Inter-VO allocation of resources by means of decen-
tralized markets that promote the creation of many local ad hoc trading sites
that can be accessed by any VO. Markets have proven their ability to allocate re-
sources efficiently [3] and, more importantly, because they provide mechanisms
through which the need may be correctly elicited and quantified; and indeed,
they promote incentives to resource owners to provide or trade their resources.

We developed DyMRA, a decentralized resource allocation system based on
markets that allows inter-VO resource allocation. DyMRA is specially designed
for dynamic and peer-to-peer environments, where the autonomy of participants
to disconnect resources at any time and its decentralized nature requires the
capacity to dynamically reallocate resources and services that manage the overall
system.

DyMRA markets are created at will and run as services within the VO. The
choice of a decentralized markets approach in the form of many local ad hoc mar-
kets is motivated by the need to deal with dynamic communities and scalability
issues that would be limited by a centralized approach.

One issue not addressed in this paper due to space limitations is that of
resource specification and bidding language. Many interesting approaches [4,5]
present efficient bidding languages that fulfill our requirements. For the purpose
of this paper, we consider resources as processing time, storage, and applications
that provide a stateless service, like an efficient codec or a parallelizing compiler.
We deal with heterogeneity by using standard interfaces, implemented as WS,
to access the resources. These belong to a VO and we assume that they can be
disconnected or fail at any time. This dynamic behavior introduces a complexity
that, added to the decentralized behavior of markets, forced us to design a system
that allows us to decouple services from physical resources. Furthermore, we had
to pay special attention to availability guarantees.

DyMRA is built on top of LaCOLLA [6,7], a middleware available at [8].
LaCOLLA is a peer-to-peer middleware that allows a group of users scattered
across the Internet to share resources in a cooperative manner and that allows
the deployment of stateless services using the resources provided by the members
of the VO. LaCOLLA guarantees that services deployed are always available (if
enough resources are provided). Therefore, DyMRA components are deployed as
services in LaCOLLA middleware.

2 Scenario

The scenario presents three different VOs A, B and C that provide general
purpose functionalities such as a file sharing services and communication ser-
vices to its members. VO A is an online gaming community where few members
contribute regularly their computational resources to the community; instead

DyMRA: Dynamic Market Deployment 55

members pay a subscription fee to obtain the services. B is a scientific com-
munity and its purpose is the sharing of knowledge and technical documents
amongst its members; generally its members contribute with their resources to
the community. Finally, VO C is a photo sharing community where members
usually contribute with their resources.

This paper focuses on the allocation of resources provided by virtual organi-
zations to other ones and fits perfectly in this scenario. We assume that VOs
provide management logic to control the resources within the community.

External allocations may be needed due to spontaneous load surges or when
resources cannot be provided by the VO. At a time, the VO A may require more
resources than available to match the required quality of service. The VO mon-
itoring service will trigger the buyer service (termed Prospector) to allocate the
needed resources. The Prospector searches for markets that trade in the required
resources and places a bid on them. Markets are services exposed by VOs that
aim to trade in some of their resources. Seller agents (from B or C VOs for ex-
ample) are triggered to sell resources when the monitoring service determines a
surplus of resources within the VO according to some VO policies. Sellers create
or place a bid on Markets depending on the suitability of the Market to trade
in their resources. When a DyMRA component fails or is disconnected due to
the inherent dynamism of VO members (i.e. someone switches off her computer)
automatically and transparently to participants the service is reallocated to an-
other suitable node within the VO. After the market clears and winning Seller
services and Prospector services are notified, the resources are added to the Pool
of external resources of the buying community.

DyMRA addresses this kind of scenarios by providing services to automati-
cally allocate external resources into a VO. The main contributions of DyMRA
are twofold; first, the components of DyMRA are deployed as services inside a
VO and can, hence, be reallocated when its current location fails or disconnects,
keeping the functionality available. Second, DyMRA proposes to distribute mar-
kets amongst virtual organizations that place our approach in a design space be-
tween a decentralized and a centralized architecture, which we believe responds
better to the targeted environment.

3 Requirements

– Interoperability: VO services may be exposed as standard interfaces that
enable interoperation between VOs.

– Group self-sufficiency: The execution of services and the deployment
management should be performed using only the resources contributed to
the VO by its members.

– Decentralization and self-organization: In case of connections, discon-
nections and failures, the system should keep functioning (it shouldn’t have a
single point of failure) and should reorganize without requiring any external
intervention, getting to a consistent state as soon as the available resources
and VO stability allow it.

56 D. Lázaro, X. Vilajosana, and J.M. Marquès

– Individual autonomy: The VO’s members should be free to decide which
actions to carry out, what resources and services to provide, and when to
connect or disconnect.

– Market availability: Market services should always be available (if needed)
as long as there are enough resources to execute them in the VO.

– Location transparency: Market services don’t have to worry about other
market service’s location. The system resolves them transparently, and ser-
vices access each other using a location-independent identifier.

4 Related Work

Economic based resource allocation within the context of Virtual Organiza-
tions, Grid Computing and large scale peer-to-peer systems has been extensively
studied [9,10,11]. However, as far as we know, the issue of addressing inter-VO
resource allocation is an emergent field of study. Recently in [12] a novel archi-
tecture for inter-VO resource allocation in Grids is presented. Their proposal is
suited between a centralized and a decentralized approach and proposes a con-
figurable mediator process (executing within the VO) that allocates resources
from external providers. Our approach goes one step beyond and we provide, on
one hand, transparent reallocation of market services in a dynamic environment,
and, on the other hand, we rely on the members of collaborating communities
to mutually provide resources.

Another feature that we addressed is that of dynamic deployment of services.
We acknowledge some systems that perform this task in a decentralized and self-
organized way, as is our target. Snap [13] nodes form a Distributed Hash Table
(DHT) which stores the code and data of the services. Replicas of a service are
created on demand and stopped when demand decreases. Another system called
Chameleon [14] deploys services in a cluster of nodes communicated through a
DHT, while trying to maximize its “utility” (calculated from a value assigned
to each service and its performance in a given node).

5 Architecture

The architecture of DyMRA consists of a series of components which are in
charge of the trading process. These components are:

– Prospector: when external resources are needed, it is in charge of finding
a suitable market and obtaining the desired resources.

– Seller: it is in charge of offering the aggregated surplus resources of the VO
in a suitable market.

– Pool service: it controls the access of the VO members to the external
resources acquired by the VO, acting as a mediator.

– Sale Handler: it controls the external access to a set of resources sold to
another VO, acting as a mediator.

DyMRA: Dynamic Market Deployment 57

– Accounting service: it monitors the resources available in a VO. Following
a policy determined by the VO, it starts the acquisition of external resources
or the cession of own resources to other VOs when convenient.

– Market: it mediates the trading of resources between VOs.
– Market Directory: Contains an index of existing markets and their

locations.

The system is built upon a middleware called LaCOLLA [6] which allows
a small group of computers connected through internet to participate in col-
laborative activities and sharing their resources (i.e. provides virtualization of
resources), while tolerating high levels of dynamism. This middleware also al-
lows the deployment of services within a VO (or group) [7]. When a service is
deployed, the system guarantees that it will always be available, placing it in a
suitable location chosen among the resources of the VO, and reinstantiating it
in case of failure.

The components of DyMRA are deployed as services inside a VO (except the
Market Directory), and can, hence, be reallocated when its current location fails
or disconnects, keeping the functionality available. The communication between
VOs is done through markets, which are also services, existing in a specific VO.
To access a market, it must be discovered through the Market Directory (MD).
Markets contact the MD to publish their location and characteristics, and the
MD keeps them as a soft state. In case a market ceases to exist, the MD will
delete the information about it after its time-to-live (TTL) expires. If a market
is reallocated, it will inform the MD of its new location.

The MD is not part of a VO, but an external service which is known and can
be accessed by all groups. Its implementation is out of the scope of this paper,
but there are many possibilities. It could be a centralized index, but it could
also be implemented in a decentralized way if each VO deployed a ”MD node”
service, and each one of these services act as a node of a DHT, thus distributing
the information stored among the VOs. Anyway, this doesn’t affect the design
of our architecture.

To help understand the functionality of each of the components presented
and the overall behavior of the system, we will explain in detail how the trade
of resources is done at the buyer VO and at the seller VO (shown at fig. 1), and
how the posterior access to the traded resources is managed (fig. 2).

5.1 Trading Process

Buying resources

1a. The Accounting service detects that the resources of a certain type (e.g.
storage) available in the VO are below a certain threshold defined by the
VO policy. According to a given policy, it determines the resources needed
and other factors such as the price that should be paid for them. With this
information, it contacts the Prospector and asks it to acquire such resources.

2a. The Prospector looks for a suitable market in the Market Directory.

58 D. Lázaro, X. Vilajosana, and J.M. Marquès

3a. The Market Directory sends the Prospector a list of markets which suit the
specified needs.

4a. The Prospector chooses one of the markets of the list. In case that there is
no suitable market, it proceeds to the creation of a new one. Once it has
the adequate market located, the Prospector sends its bid. A generic bid
describes the type of resource to bid for, the price per unit offered and the
number of units required amongst others.

Selling resources

1b. The Accounting service detects that the resources of a certain type (e.g.
storage) available in the VO are above a certain threshold defined by the
VO policy. According to a given policy, it determines that these resources
can be leased to another group, and fixes the price that should be paid for
them. With this information, it contacts the Seller and asks it to sell the
surplus resources.

2b. The Seller looks for a suitable market in the Market Directory.
3b. The Market Directory sends the Seller a list of markets which suit the

specified needs.
4b. The Seller chooses one of the markets of the list. In case that there is no

suitable market, it proceeds to the creation of a new one. Once it has the
adequate market located, the Seller sends its offer.

Agreement

5. The market makes an agreement between the buyer and the seller. A sched-
uled double auction is used to match winning bids and offers. The winners are

Fig. 1. Interaction among components in the trading process

DyMRA: Dynamic Market Deployment 59

selected by calculating the price where supply balances demand and match-
ing the highest buy bids above the price with the lowest sell offers below the
price. After this, it notifies the sale to both the Prospector and the Seller.

6. The Seller starts a Sale Handler, which is deployed in its VO. This Sale
Handler keeps the information about the leasing conditions, and mediates
the use of the resources according to these conditions.

7. The Prospector informs the Pool service of its group about the resources
bought and the agreement conditions, as well as the location of the Seller of
the resources.

When a Prospector or a Seller finds that there is no market available that suits
its needs, it proceeds to the creation of a new one. As stated before, the market
is implemented as a service. Hence, the component (Prospector or Seller) creates
a new service in its VO, which is a market with the desired characteristics. This
market registers itself in the Market Directory, and therefore can be accessed by
buyers or sellers from outside the VO.

5.2 Accessing the Resources

1. Whenever a client needs to use a resource, the system checks the VO poli-
cies to determine whether it must depend only on local resources or should
use external resources. In the latter case, the client contacts the Accounting
service.

2. The Accounting service checks the resources currently available to the VO.
Following the VO’s policy, it determines what resources the client must use,
whether these are internal or external. In the former case, it tells the client
which resource to use. Otherwise, it tells him to contact the Pool service.

3. The client contacts the Pool service, as if it was a local resource.
4. The Pool service chooses which of the external resources available to the VO

should be used, and contacts its corresponding Seller. It sends the id of the
sale it wants to use.

Fig. 2. Interaction among components in the access process

60 D. Lázaro, X. Vilajosana, and J.M. Marquès

5. The Seller tells the Pool service the location of the Sale Handler that manages
the specific agreement.

6. The Pool service contacts the Sale Handler, according to the conditions of the
agreement, which may include, for example, symmetric key cryptography. It
basically resends the request of the client.

7. The Sale Handler checks that the request of the Pool service does not violate
the conditions of the agreement. After this, it uses the resources of the VO
to fulfill the request of the Pool service.

As stated before, the services can change their locations due to failures or
disconnections. This is not a problem inside a VO, as the system guarantees
that clients, as well as other services, can contact any active service. To access
external resources, though, the Pool must contact the Seller of another VO,
whose location might have changed from the moment when the agreement was
made. This can be solved in more than one way. A solution would be to use
the Market Directory to store also the location of the Seller of each VO. This
information would be maintained in a soft state, just like the one about markets,
with the Sellers explicitly publishing their locations in the Directory. The Pool
could then contact the MD to get the current location of the Seller, in case
it cannot reach it in its previous location. This would solve the problem, but
implies relying in an external entity (even though, as seen before, the MD can
be implemented cooperatively by the VOs). A solution that only depends on
the two VOs that need to communicate would be that both the Pool and the
Seller keep the location of those Sellers and Pools, respectively, they have a deal
with. In case one of these services is reallocated, it would notify all its “business
partners” about its new location. Although it would be less probable, contact
can still be lost if both Pool and Seller are reallocated at the same time. To
further diminish this probability, these services could be replicated inside the
VO. In the worst case, if all the replicas of both services fail together and the
Pool of one VO can’t contact the Seller of the other VO, the deal is broken, and
both VOs will have to go back to the market.

6 Validation

This section presents an implementation of the proposed mechanism and its
first validation. These preliminary results demonstrate the viability of our pro-
posal and encourage us to refine it. Currently we are working on a further and
exhaustive validation.

We implemented a prototype of the proposed architecture to test its useful-
ness. The Prospector, Seller, Pool, SaleHandler and the Market have been im-
plemented as deployable services over the LaCOLLA middleware. The Market
provides generic operations that allow different mechanisms to be implemented.
For our testing purposes we developed a double auction [15] protocol that en-
ables buyers and sellers to submit bids for multiple units of a single resource (i.e
storage capacity, cpu capacity and applications).

DyMRA: Dynamic Market Deployment 61

The MarketDirectory has been implemented as a centralized index, but, as
mentioned above, it can be easily substituted with a decentralized approach
[16,17]. For our testing purposes, the market directory stores pairs of
< key, value > where the key identifies the type of traded resource and the
value refers to the identifier of the market where it is traded in.

The objective of our test is to validate the trading process described above.
One of the main objectives of our proposal is to provide good availability in
environments of high dynamism and churn. Hence, availability has been the
main focus of our tests.

We executed a process which periodically tried to buy resources, and another
that tried to sell resources. The necessary services (Prospector, Pool, Seller)
where active inside the VO, while there was a MarketDirectory available in
a static location. Markets, though, according to our proposal, are created on
demand. When a Prospector or a Seller wants to access a Market, but there
in’t any available, it proceeds to create and activate one. When this happens,
it is counted in our tests as a failed attempt. For simplicity, Markets have been
assigned a limited lifespan, after which they resolve the auction and send the
results to the clients. This implies that, periodically, a Prospector or a Seller
will have to create a Market, thus decreasing the perceived availability. Markets
could also be permanently active, which would increase the availability of the
system. There is, though, a trade off between the obtained availability and the
resources spent to keep the market active.

The LaCOLLA middleware offers the ability to simulate users’ activity and
system dynamism (connections, disconnections, failures) in order to conduct
tests and validate its functioning. We measured the availability of markets in
function of the levels of dynamism of the system. Specifically, we evaluated two
different levels of dynamism. In the less dynamic (from now on, called G1) each
component had a probability of failure per iteration of 0,0005, and a probability
of ordered disconnection of 0,0025. In the more dynamic of the two (G2), the
probability of failure per iteration was 0,005, while the probability of disconnec-
tion was 0,008. Tests lasted 500 iterations.

The data we analyze is the number of bids that arrive to the market, in
relation to the number of bids issued by the group. This depends exclusively
of the mechanisms of our system, in contrast to the number of matches, which
depends on supply and demand. Note once again that this number decreases
because markets have a limited lifespan and are created on demand, which results
in a failed access when a market must be created. That doesn’t mean that, in a
real situation, the bid cannot be issued, only that it will have a bigger delay.

Fig. 3 shows the availability (percentage of succesfully issued bids) obtained
in 20 executions, for both G1 and G2. We see that, as expected, the availability
is higher in G1, decreasing in G2 because of the higher level of dynamism.

Fig. 4 shows the cumulative distribution function for both G1 and G2. For
G1, 50% of the executions obtain an availability of 70% or higher, which must
be considered noting that markets are activated on demand, and we count it as

62 D. Lázaro, X. Vilajosana, and J.M. Marquès

Fig. 3. Availability vs level of Dynamism

Fig. 4. Cumulative probability of availability levels for G1 and G2

unavailable when activation is needed. For G2, availability is low because of the
high level of dynamism.

7 Conclusions

The paper proposes DyMRA, a framework for inter-VO resource allocation. The
key aspect of DyMRA is that of market decentralization, that allows allocations
of resources amongst different VO in spite of markets’ failures. Markets and me-
diator components such as buyer agents and seller agents are exposed as mobile
services within the VO that allows the utilization of inherently centralized mech-
anisms such as auctions into a decentralized environment without introducing
bottlenecks or single points of failure. Furthermore the paper presents the prelim-
inary results of evaluating our proposed architecture. Our future work includes
the complete development of the DyMRA components, such as a decentralized
Market Directory, and the set of mechanisms to control the access to external
allocated resources. Besides, we aim to consider duration of the allocations of
resources (lease times) that would permit the application of our framework in a
real environment.

DyMRA: Dynamic Market Deployment 63

References

1. http://setiathome.berkeley.edu/

2. Pouwelse, J., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema,
D.H.J., Reinders, M., van Steen, M., Sips, H.: Tribler: A social-based peer-to-peer
system. Concurrency and Computation: Practice and Experience 19, 1–11 (2007)

3. Shneidman, J., Ng, C., Parkes, D.C., AuYoung, A., Snoeren, A.C., Vahdat, A.,
Chun, B.: Why markets could (but don’t currently) solve resource allocation prob-
lems in systems. In: HOTOS 2005. Proceedings of the 10th conference on Hot Top-
ics in Operating Systems, Berkeley, CA, USA, USENIX Association, p. 7 (2005)

4. Cavallo, R., Parkes, D.C., Juda, A.I., Kirsch, A., Kulesza, A., Lahaie, S., Lubin, B.,
Michael, L., Shneidman, J.: Tbbl: A tree-based bidding language for iterative com-
binatorial exchanges. In: Multidisciplinary Workshop on Advances in Preference
Handling (IJCAI) (2005)

5. Boutilier, C., Hoos, H.H.: Bidding languages for combinatorial auctions. In: Pro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelli-
gence, pp. 1211–1217 (2001)

6. Marquès, J.M., Vilajosana, X., Daradoumis, T., Navarro, L.: Lacolla: Middle-
ware for self-sufficient online collaboration. IEEE Internet Computing 11(2), 56–64
(2007)

7. Lázaro, D., Marquès, J.M., Jorba, J.: Decentralized service deployment for collab-
orative environments. In: CISIS 2007. Proceedings of the 1st International Confer-
ence on Complex, Intelligent and Software-Intensive Systems, pp. 229–234. IEEE
Computer Society Press, Los Alamitos (2007)

8. http://dpcs.uoc.edu/lacolla/

9. Lai, K., Huberman, B.A., Fine, L.: Tycoon: A Distributed Market-based Resource
Allocation System. Technical Report arXiv:cs.DC/0404013, HP Labs, Palo Alto,
CA, USA (2004)

10. Catnets Consortium: Deliverable d3.1: Implementation of additional services for
the economic enhanced platforms in grid/p2p platform: Preparation of the concepts
and mechanisms for implementation (gmm) (2005)

11. Buyya, R., Abramson, D., Venugopal, S.: The grid economy (2004)
12. Amara-Hachmi, N., Vilajosana, X., Krishnaswamy, R., Navarro, L., Marques, J.M.:

Towards an open grid marketplace framework for resources trade. In: GADA 2007.
Grid computing, high-performAnce and Distributed Applications (to appear, 2007)

13. Gavalda, C.P., Lopez, P.G., Andreu, R.M.: Deploying wide-area applications is a
snap. IEEE Internet Computing 11(2), 72–79 (2007)

14. Adam, C., Stadler, R.: Implementation and evaluation of a middleware for self-
organizing decentralized web services (2006)

15. Bao, S., Wurman, P.R.: A comparison of two algorithms for multi-unit k-double
auctions. In: ICEC 2003: Proceedings of the 5th international conference on Elec-
tronic commerce, pp. 47–52. ACM Press, New York (2003)

16. Ghodsi, A.: Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden (2006)

17. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: One ring to rule them
all: service discovery and binding in structured peer-to-peer overlay networks. In:
EW10: Proceedings of the 10th workshop on ACM SIGOPS European workshop:
beyond the PC, pp. 140–145. ACM Press, New York (2002)

http://setiathome.berkeley.edu/
http://dpcs.uoc.edu/lacolla/

	Introduction
	Scenario
	Requirements
	Related Work
	Architecture
	Trading Process
	Accessing the Resources

	Validation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

