
Towards decentralized resource allocation for collaborative peer to peer learning
environments

Xavier Vilajosana, Daniel Lázaro, Joan Manuel Marquès, Angel A. Juan
Universitat Oberta de Catalunya

{xvilajosana,dlazaroi,jmarquesp,ajuanp}@uoc.edu

Abstract

Collaborative e-learning virtual communities use virtual
learning environments provided by the university or tools
that are available in Internet. Although this model has
proven to work, it has important limitations. A way to
deal with them is by defining virtual organizations (VO)
that gather the resources and interests of their members
in a way that they can lend resources to or borrow them
from other VO. This paper presents DyMRA, a decentral-
ized resource allocation system based on markets that al-
lows inter-VO resource allocation. DyMRA is specially de-
signed for collaborative peer-to-peer environments, where
the autonomy of participants and its decentralized nature
requires the capacity to dynamically reallocate resources
and services that manage the overall system. DyMRA is
built on top of LaCOLLA, a peer-to-peer middleware that
allows a group of users to share resources in a collaborative
manner. We present the design, architecture and validation
of our proposal.

1 Introduction

Nowadays nobody doubts that E-Learning is an effec-
tive and useful way to learn, as demonstrates the success of
many virtual universities – the Open University of Catalo-
nia (http://www.uoc.edu), with its almost 40.000 students,
is an example of it – or the fact that, in traditional universi-
ties, many subjects are taught totally or partially in a virtual
manner. Collaborative e-learning has also deserved a lot of
attention and many solutions have been proposed. In either
case, the resulting virtual communities use virtual learn-
ing environments provided by the university which helps
to preserve the community notion – or using tools that are
available in Internet – either for free or paying. Although
this model has proven to work, it has important limitations,
like the following three: learning institutions has to esti-
mate the amount of resources needed to deal with peak sit-
uations, with the resulting over-dimension of the system;
different systems (e.g. belonging to different faculties) do
not share resources, which may result in having in the same

0Work supported by MCYT-TSI2005-08225-C07-05, Grid4All(IST-
2006-034567) and TIN2007-68050-C03-01.

university some systems overloaded at some periods of the
year while other systems, at this period, are underutilized;
and that ad hoc collaborative groups are only partially sup-
ported, because the tools and resources available to them
are restricted to university capacity and polices.

A way to deal with those limitations is by defining vir-
tual organizations (VO) that gather the resources and inter-
ests of their members in a way that they can lend resources
to or borrow them from other VO. Examples of VO can be
a faculty department or a group doing a collaborative activ-
ity. Whilst the resources within a VO may be sometimes
insufficient to satisfy QoS requirements under unexpected
load surges, high level of dynamicity of its members or un-
predictable failures, computers that belong to another VO
may have surplus bandwidth, storage and computations re-
sources. This opens challenging opportunities to promote
inter-VO resource allocation. In other words, a VO could
aggregate their surplus resources and offer them to other
VOs.

In this paper we address Inter-VO allocation of resources
by means of decentralized markets that promote the cre-
ation of many local ad hoc trading sites that can be accessed
by any VO. Markets have proven their ability to allocate
resources efficiently [12] and, more importantly, they pro-
vide mechanisms through which the need may be correctly
elicited and quantified; and indeed, they promote incentives
to resource owners to provide or trade their resources.

We developed DyMRA [10], a decentralized resource al-
location system based on markets that allows inter-VO re-
source allocation. DyMRA is specially designed for dy-
namic and peer-to-peer environments, where the autonomy
of participants to disconnect resources at any time and its
decentralized nature requires the capacity to dynamically
reallocate resources and services that manage the overall
system.

DyMRA markets are created at will and run as services
within the VO. The choice of a decentralized markets ap-
proach in the form of many local ad hoc markets is moti-
vated by the need to deal with dynamic communities and
scalability issues that would be limited by a centralized ap-
proach.

One issue not addressed in this paper due to space limita-
tions is that of resource specification and bidding language.
Many interesting approaches [6] present efficient bidding
languages that fulfill our requirements. For the purpose of

1



this paper, we consider resources as processing time, stor-
age, and applications that provide a stateless service, like
an efficient codec or a parallelizing compiler. We deal with
heterogeneity by using standard interfaces, implemented as
WS, to access the resources. These belong to a VO and we
assume that they can be disconnected or fail at any time.
This dynamic behavior introduces a complexity that, added
to the decentralized behavior of markets, forced us to design
a system that allows us to decouple services from physical
resources. Furthermore, we had to pay special attention to
availability guarantees.

Another important aspect in a system that allows alloca-
tion of external resources is that of defining a medium of
exchange, namely a virtual currency. A virtual currency fa-
cilitates the transfer of services or resources. Furthermore,
the virtual currency rather than storing value acts as a token
that simplifies preference elicitation and provides incentives
to share resources while facilitating trading without incur-
ring in real payment. In some cases, it may be interesting
that virtual currency could be translated into real money. In
some environments, though, this might not be desirable. For
example, in the case of VOs formed inside a university, re-
sources should be shared without needing to exchange real
money. Hence, we use virtual currency as a means to quan-
tify the resources a VO can allocate, leaving the option to
translate this into real money for the environments where
it’s appropriate.

DyMRA is built on top of LaCOLLA1 [11, 9]. La-
COLLA is a peer-to-peer middleware that allows a group
of users scattered across the Internet to share resources in a
cooperative manner and that allows the deployment of state-
less services using the resources provided by the members
of the VO. LaCOLLA guarantees that services deployed are
always available (if enough resources are provided). There-
fore, DyMRA components are deployed as services in La-
COLLA middleware.

2 Related work

Economic based resource allocation within the con-
text of Virtual Organizations, Grid Computing and large
scale peer-to-peer systems has been extensively studied [5].
However, as far as we know, the issue of addressing inter-
VO resource allocation is an emergent field of study. Re-
cently in [1] a novel architecture for inter-VO resource al-
location in Grids is presented. Their proposal is suited be-
tween a centralized and a decentralized approach and pro-
poses a configurable mediator process (executing within the
VO) that allocates resources from external providers. Our
approach goes one step beyond and we provide, on one
hand, transparent reallocation of market services in a dy-
namic environment, and, on the other hand, we rely on the
members of collaborating communities to mutually provide
resources.

Another feature that we addressed is that of dynamic de-
ployment of services. Other systems, like Snap [8], also
perform this task in a decentralized and self-organized way.

1Available at http://dpcs.uoc.edu/lacolla/.

Snap nodes form a Distributed Hash Table (DHT) which
stores the code and data of the services. Replicas of a ser-
vice are created on demand and stopped when demand de-
creases.

3 Architecture

The architecture of DyMRA consists of a series of com-
ponents which are in charge of the trading process. These
components are:

• Prospector: when external resources are needed, it is
in charge of finding a suitable market and obtaining the
desired resources.

• Seller: it is in charge of offering the aggregated surplus
resources of the VO in a suitable market.

• Pool service: it controls the access of the VO members
to the external resources acquired by the VO, acting as
a mediator.

• Sale Handler: it controls the external access to a set
of resources sold to another VO, acting as a mediator.

• Accounting service: it monitors the resources avail-
able in a VO. Following a policy determined by the
VO, it starts the acquisition of external resources or
the cession of own resources to other VOs when con-
venient.

• Market: it mediates the trading of resources between
VOs.

• Market Directory: Contains an index of existing mar-
kets and their locations.

The system is built upon a middleware called LaCOLLA
[11] which allows a small group of computers connected
through internet to participate in collaborative activities and
sharing their resources (i.e. provides virtualization of re-
sources), while tolerating high levels of dynamism. This
middleware also allows the deployment of services within
a VO (or group) [9]. When a service is deployed, the sys-
tem guarantees that it will always be available, placing it in
a suitable location chosen among the resources of the VO,
and reinstantiating it in case of failure.

The components of DyMRA are deployed as services in-
side a VO (except the Market Directory), and can, hence,
be reallocated when its current location fails or disconnects,
keeping the functionality available. The communication be-
tween VOs is done through markets, which are also ser-
vices, existing in a specific VO. To access a market, it must
be discovered through the Market Directory (MD). Markets
contact the MD to publish their location and characteristics,
and the MD keeps them as a soft state. In case a market
ceases to exist, the MD will delete the information about it
after its time-to-live (TTL) expires. If a market is reallo-
cated, it will inform the MD of its new location.

The MD is not part of a VO, but an external service
which is known and can be accessed by all groups. Its im-
plementation is out of the scope of this paper, but there are



many possibilities. It could be a centralized index, but it
could also be implemented in a decentralized way if each
VO deployed a ”MD node” service, and each one of these
services act as a node of a DHT, thus distributing the infor-
mation stored among the VOs. Anyway, this doesn’t affect
the design of our architecture.

4 Trading process

To help understand the functionality of each of the
components presented and the overall behavior of the
system, we will explain in detail how the trade of resources
is done at the buyer VO and at the seller VO (shown at fig.
1).

Buying resources

1a. The Accounting service detects that the resources of a
certain type (e.g. storage) available in the VO are be-
low a certain threshold defined by the VO policy. Ac-
cording to a given policy, it determines the resources
needed and other factors such as the price that should
be paid for them. With this information, it contacts the
Prospector and asks it to acquire such resources.

2a. The Prospector looks for a suitable market in the Mar-
ket Directory.

3a. The Market Directory sends the Prospector a list of
markets which suit the specified needs.

4a. The Prospector chooses one of the markets of the list.
In case that there is no suitable market, it proceeds
to the creation of a new one. Once it has the ade-
quate market located, the Prospector sends its bid. A
generic bid describes the type of resource to bid for, the
price per unit offered and the number of units required
amongst others.

Selling resources

1b. The Accounting service detects that the resources of
a certain type (e.g. storage) available in the VO are
above a certain threshold defined by the VO policy.
According to a given policy, it determines that these
resources can be leased to another group, and fixes the
price that should be paid for them. With this informa-
tion, it contacts the Seller and asks it to sell the surplus
resources.

2b. The Seller looks for a suitable market in the Market
Directory.

3b. The Market Directory sends the Seller a list of markets
which suit the specified needs.

4b. The Seller chooses one of the markets of the list. In
case that there is no suitable market, it proceeds to the
creation of a new one. Once it has the adequate market
located, the Seller sends its offer.

Agreement

Figure 1: Interaction among components in the trading pro-
cess

5. The market makes an agreement between the buyer and
the seller. A scheduled double auction is used to match
winning bids and offers. The winners are selected by
calculating the price where supply balances demand
and matching the highest buy bids above the price with
the lowest sell offers below the price. After this, it
notifies the sale to both the Prospector and the Seller,
by sending them the Agreement. This is explained in
depth in section 5.

6. The Seller starts a Sale Handler, which is deployed in
its VO. This Sale Handler keeps the information about
the leasing conditions, and mediates the use of the re-
sources according to these conditions.

7. The Prospector informs the Pool service of its group
about the resources bought and the agreement condi-
tions, as well as the location of the Seller of the re-
sources.

When a Prospector or a Seller finds that there is no mar-
ket available that suits its needs, it proceeds to the creation
of a new one. As stated before, the market is implemented
as a service. Hence, the component (Prospector or Seller)
creates a new service in its VO, which is a market with the
desired characteristics. This market registers itself in the
Market Directory, and therefore can be accessed by buyers
or sellers from outside the VO.

Once the agreement has been made, the buying VO can
start using the external resources. Whenever a client needs
to use a resource, the system checks the VO policies to
determine whether it must depend only on local resources
or should use external resources. In the latter case, the
client contacts the Accounting service, which checks the re-
sources currently available to the VO. Following the VO’s
policy, it determines what resources the client must use,
whether these are internal or external. Access to external
resources is made through the Pool service, which contacts
the Seller to obtain the current location of the Sale Handler
that manages the specific agreement.



5 Agreement and Payment

One issue addressed in DyMRA is that of agreement
and contract specification and its relation with payment. In
DyMRA groups make use of virtual currency that is man-
aged by the Accounting service. At initialization each group
has a certain quantity of virtual currency that may be spent
on acquiring other external resources. Besides, groups may
increase their amount of currency by selling their unused re-
sources to other groups. The following subsection present
how DyMRA deals with agreements and manages payment
of its transactions.

5.1 Agreement

The agreement specification process is carried out by the
Market that creates an agreement object. The Agreement
specifies the acquired resources, the lease time, the price
and the contact point (IP address and port), that is the Seller
location for the case of the Agreement sent to the Prospector
and the Prospector location for the case of the Agreement
sent to the Seller . Besides, the Agreement also includes the
final price determined by the market’s pricing policy. Once
the agreement has been created, it is send to both Prospector
and Seller in order to either start payment protocol or to
start the leasing of resources. That choice may depend on
the payment policy configured for that trade.

The agreement has been specified as an XML schema
extension for Agreement, which is applied, but not lim-
ited, to standard languages for job submission like WS-
Agreement[3], JDL-GLUE[2] or the JSDL [4]. JSDL and
JDL provide semantics for web services description but do
not address the description of Agreement. Contrarily, the
WS-Agreement addresses the Agreement specification but
it is placed in a more generic level than our approach which
can be included as a part of it.

The following code snipped presents our XML schema
extension for the agreement and contract specification.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xsd:complexType name ="agreement Type">
<xsd:sequence>

<xsd:element ref ="resource"minOccurs ="1"maxOccurs ="1"/>
<xsd:element ref ="time" minOccurs ="1"maxOccurs ="1"/>
<xsd:element ref = "price"minOccurs ="0"maxOccurs ="1"/>
<xsd:element ref ="partnerLocation" minOccurs ="0"maxOccurs ="1"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name ="resourceType">
<xsd:sequence>

<xsd:element name="ResourceDescRef" type="xsd:IDREF"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name ="leaseType">
<xsd:sequence>

<xsd:element name="startTime" type="timeType"/>
<xsd:element name="endTime" type="timeTypet"/>
<xsd:element name="slotSize" type="xsd:int"/>
<xsd:element name="nbSlotTime" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name ="locationType">
<xsd:sequence>

<xsd:element name="address" type="xsd:string"/>
<xsd:element name="port" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name ="timeType">
<xsd:sequence>

<xsd:element name="day" type="xsd:int"/>
<xsd:element name="hour" type="xsd:int"/>
<xsd:element name="minute" type="xsd:int"/>
<xsd:element name="second" type="xsd:int"/>
<xsd:element name="millis" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name ="Agreement"type ="agreementType"/>
<xsd:element name ="resource"type ="resourceType"/>
<xsd:element name ="time" type ="leaseType"/>
<xsd:element name ="price" type ="xsd:double"/>
<xsd:element name ="partnerLocation" type ="locationType"/>

<redefine schemaLocation="./agreement.xsd">
<!-- redefinition of Agreement -->

<xsd:complexType name="pricingPolicyType">
<xsd:choice>
<xsd:element name="payBefore" type="xsd:boolean"/>
<xsd:element name="payAfter" type="xsd:boolean"/>

</xsd:choice>
</xsd:complexType>

<complexType name="Contract">
<complexContent>
<extension base="xs:Agreement">
<sequence>
<element name="currency" type="xsd:string"/>
<element name="accountId" type="xsd:string"/>
<element name="credentials" type="xsd:string"/>
<element name="paymentLocation" type="locationType"/>
<element name="accessLocation" type="locationType"/>
<element name="paymentpolicy" type="paymentPolicyType"/>

</sequence>
</extension>

</complexContent>
</complexType>
</redefine>

5.2 Payment

DyMRA implements two payment policies, namely
”paybefore” and ”payafter”. ”paybefore” requires the ex-
ecution of the payment protocol before the Pool Service
is able to use the acquired resources. ”payafter” does not
require the payment until the resources have already been
used.

The payment protocol is executed between the Seller and
the Prospector. Once the seller has received the agreement
object he creates the contract object that specifies mainly
the accountID of the seller, the payment service location,
i.e. the accounting service within Seller’s VO, the currency
used for the payment (currently in DyMRA we only use
one type of currency but we devised the schema to support
different types of currency).

Three messages constitute the payment protocol:

1. requestPayment: The Seller creates the contract indi-
cating its accountID, the location of the accounting ser-
vice of the VO, the payment policy and the credentials
to access the resources only for the case of a ”payafter”
payment policy.

2. payment: When the Prospector receives the contract,
he determines whether it has to send the payment to the
accounting service specified in the contract, or contrar-
ily he can get access to the resource before payment.
In this case, the contract includes the credentials to ac-
cess to the acquired resource.

3. paymentAcknowledgement: When the Seller is notified
by the accounting service within its VO that the pay-
ment has been done he sends the contract again with
the credentials to access the resource as well as the lo-
cation of either the resource or the SaleHandler respon-
sible of that resource (only for the case of ”paybefore”
payment policy).

As state before, the payment protocol can be done before
accessing to the resources, in this case, once the Prospector
has the credentials to access the resource he communicates



them to the Pool Service within its VO who will be respon-
sible of accessing the resources. For the case of ”payafter”
payment policy, the Prospector communicates the Pool Ser-
vice the credentials and the access point to resources. Once
the lease expires, the Pool Service notifies to the Prospec-
tor that sends the payment to the corresponding accounting
service.

6 Validation

This section presents an implementation of the proposed
mechanism and its first validation. These preliminary re-
sults demonstrate the viability of our proposal and encour-
age us to refine it. Currently we are working on a further
and exhaustive validation.

We implemented a prototype of the proposed architec-
ture to test its usefulness. The Prospector, Seller, Pool, Sale-
Handler and the Market have been implemented as deploy-
able services over the LaCOLLA middleware. The Mar-
ket provides generic operations that allow different mecha-
nisms to be implemented. For our testing purposes we de-
veloped a double auction protocol that enables buyers and
sellers to submit bids for multiple units of a single resource
(i.e storage capacity, cpu capacity and applications).

The Market Directory has been implemented as a cen-
tralized index, but, as mentioned above, it can be easily sub-
stituted with a decentralized approach such as a DHT. For
our testing purposes, the market directory stores pairs of
< key, value > where the key identifies the type of traded
resource and the value refers to the identifier of the market
where it is traded in.

The objective of our test is to validate the trading process
described above. One of the main objectives of our proposal
is to provide good availability in environments of high dy-
namism and churn. Hence, availability has been the main
focus of our tests.

First, we consider that services can become unavailable
because of failure or disconnection of the node where they
are executing. In these cases, though, the service will be
started again in a different node. We estimated the aver-
age service migration time as a function of the messages
exchanged amongst VO management components and the
estimated transmission time in a peer-to-peer network [7].
We found that when a service is migrated to another com-
ponent within the VO it takes 6 to 10 messages with a trip
time of 100ms with highest probability [7], so we estimate
that the service migration takes a time compresed between
0.6 and 1 second. This is the time that a service will remain
unavailable in case of failure.

In order to obtain data about the availability perceived
by users, we executed a process which periodically tried to
buy resources, and another that tried to sell resources. The
necessary services (Prospector, Pool, Seller) where active
inside the VO, while there was a Market Directory avail-
able in a static location. Markets, though, according to our
proposal, are created on demand. When a Prospector or a
Seller wants to access a Market, but there isn’t any avail-
able, it proceeds to create and activate one. When this hap-
pens, it is counted in our tests as a failed attempt. We have

Figure 2: Availability vs level of Dynamism

considered two configurations regarding the lifespan of the
Markets. In the first one, Markets have been assigned a
limited lifespan, after which they resolve the auction and
send the results to the clients, and are stopped and deleted
from the Market Directory. This implies that, periodically,
a Prospector or a Seller will have to create a Market, thus
decreasing the perceived availability. In the other configu-
ration, Markets are permanently active. The expected result
is that this increases the availability of the system. There is,
though, a trade off between the obtained availability and the
resources spent to keep the market active, so it is interest-
ing to quantify the improvement in availability that can be
achieved this way.

The LaCOLLA middleware offers the ability to simu-
late users’ activity and system dynamism (connections, dis-
connections, failures) in order to conduct tests and validate
its functioning. We measured the availability of markets in
function of the levels of dynamism of the system. Specif-
ically, we evaluated two different levels of dynamism. In
the less dynamic (from now on, called G1) each component
had a probability of failure per iteration of 0,0005, and a
probability of ordered disconnection of 0,0025. In the more
dynamic of the two (G2), the probability of failure per iter-
ation was 0,005, while the probability of disconnection was
0,008. Tests lasted 500 iterations.

The data we analyze is the number of bids that arrive
to the market, in relation to the number of bids issued by
the group. This depends exclusively of the mechanisms of
our system, in contrast to the number of matches, which
depends on supply and demand. Note once again that this
number decreases in the case where markets have a limited
lifespan and are created on demand, as this results in a failed
access when a market must be created. That doesn’t mean
that, in a real situation, the bid cannot be issued. In the cases
where the service is available, the bid is sent to the market
immediately. In the cases where the market is not found, the
bid can be send too, but after a delay that might be the time
it takes to create a service, if no market existed, or the time
it takes for a service to be restarted (previously estimated),
if there was a suitable marktet that had failed.

Fig. 2 shows the availability (percentage of succesfully
issued bids) obtained in 30 executions, for both G1 and G2,
when markets have a limited lifespan. We see that, as ex-



Figure 3: Cumulative probability of availability levels for
G1 and G2 with limited lifespan of markets, and for G1
with permanent markets.

pected, the availability is higher in G1, decreasing in G2
because of the higher level of dynamism. It also shows the
availability obtained when markets are permanently active,
with the level of dynamism of G1.

Fig. 3 shows the cumulative distribution function for
both G1 and G2. For G1, 50% of the executions obtain
an availability of 60% or higher, which must be considered
noting that markets are activated on demand, and we count
it as unavailable when activation is needed. For G2, avail-
ability is low because of the high level of dynamism. When
markets are permanent, instead, we obtain a much higher
availability, with more than 60% of the executions obtain-
ing an availability over 90%.

7 Conclusions

The paper proposes DyMRA, a framework for inter-VO
resource allocation. The key aspect of DyMRA is that of
market decentralization, that allows allocations of resources
amongst different VO in spite of markets’ failures. Markets
and mediator components such as buyer agents and seller
agents are exposed as mobile services within the VO that
allows the utilization of inherently centralized mechanisms
such as auctions into a decentralized environment without
introducing bottlenecks or single points of failure. Further-
more the paper presents the preliminary results of evaluat-
ing our proposed architecture. Our future work includes the

complete development of the DyMRA components, such
as a decentralized Market Directory, and the set of mech-
anisms to control the access to external allocated resources.
Besides, we aim to consider duration of the allocations of
resources (lease times) that would permit the application of
our framework in a real environment.

References

[1] N. Amara-Hachmi, X. Vilajosana, R. Krishnaswamy,
L. Navarro, and J. M. Marques. Towards an open grid
marketplace framework for resources trade. In Grid
computing, high-performAnce and Distributed Applications
(GADA’07)(to appear), Nov. 2007., 2007.

[2] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya,
M. Mambelli, J. M. Schopf, M. Viljoen, and A. Wilson.
GLUE Schema Specification - Version 1.2, Dec 2005.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-
wig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu.
Web services agreement specification (ws-agreement), ver-
sion 2006-09-07. Technical report, Global Grid Forum,
2006.

[4] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
S. McGough, D. Pulsipher, and A. Savva. Job submission
description language (jsdl) specification, version 1.0. Tech-
nical report, Global Grid Forum, 2005.

[5] Catnets Consortium. Deliverable d3.1: Implementation of
additional services for the economic enhanced platforms in
grid/p2p platform: Preparation of the concepts and mecha-
nisms for implementation (gmm), 2005.

[6] R. Cavallo, D. C. Parkes, A. I. Juda, A. Kirsch, A. Kulesza,
S. Lahaie, B. Lubin, L. Michael, and J. Shneidman. Tbbl:
A tree-based bidding language for iterative combinatorial
exchanges. In Multidisciplinary Workshop on Advances in
Preference Handling (IJCAI), 2005.

[7] K. Eger, T. Hoßfeld, A. Binzenhöfer, and G. Kunzmann. Ef-
ficient simulation of large-scale p2p networks: packet-level
vs. flow-level simulations. In UPGRADE ’07: Proceedings
of the second workshop on Use of P2P, GRID and agents
for the development of content networks, pages 9–16, New
York, NY, USA, 2007. ACM.

[8] C. P. Gavalda, P. G. Lopez, and R. M. Andreu. Deploying
wide-area applications is a snap. IEEE Internet Computing,
11(2):72–79, 2007.

[9] D. Lázaro, J. M. Marquès, and J. Jorba. Decentralized ser-
vice deployment for collaborative environments. In Pro-
ceedings of the 1st International Conference on Complex,
Intelligent and Software-Intensive Systems, CISIS’07, pages
229–234, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[10] D. Lázaro, X. Vilajosana, and J. M. Marquès.
Dymra:dynamic market deployment for decentralized
resource allocation. In Proceedings of the OTM Federated
Conferences and Workshops. Springer-Verlag, 2007.

[11] J. M. Marquès, X. Vilajosana, T. Daradoumis, and
L. Navarro. Lacolla: Middleware for self-sufficient on-
line collaboration. IEEE Internet Computing, 11(2):56–64,
2007.

[12] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, A. C. Sno-
eren, A. Vahdat, and B. Chun. Why markets could (but don’t
currently) solve resource allocation problems in systems. In
HOTOS’05: Proceedings of the 10th conference on Hot Top-
ics in Operating Systems, pages 7–7, Berkeley, CA, USA,
2005. USENIX Association.


