
UNIVERSITAT OBERTA DE CATALUNYA

LSim overview

Joan Manuel Marquès
Manel Pérez

Esteve Verdura

DPCS Research group (http://dpcs.uoc.edu)
Universitat Oberta de Catalunya

Technical Report. July, 19th 2012

Abstract
In this paper we introduce LSim, a tool for testing applications or protocols in a set of distributed computers. LSim

is formed by: a) a library (LSim Library) that automates the implementation, coordination and collection of results, and
b) a framework (LSim Framework) that automatically deploys the application or protocol in the resources that will
perform the tests. A prototype of LSim that works with java programs is currently available.

Overview
LSim is a tool for testing applications or protocols in a set of distributed computers. It is formed by: a) a library

(LSim Library) that automates the implementation, coordination and collection of results, and b) a framework (LSim
Framework) that automatically deploys the application or protocol in the resources that will perform the tests.

LSim might be used to easily run java applications or protocols in a community network. Our current prototype is
implemented in java and run applications or protocols inside a JVM. More information about LSim project and latest
implementation might be found at http://dpcs.uoc.edu/projects/lsim

A. Lsim Framework

Figure 1. LSim Framework architecture.

Figure 1 details the different elements of LSim:

• Running environment: environment that runs the application or protocol instance. Current prototype uses a
JVM but Virtual Machines or any other safer technology might be used.

• Dispatcher: receives requests to execute an application or protocol instance and runs it in the running
environment. It has control over the application, being able to stop it if needed. Furthermore, it is responsible of all
communication among LSim instances, avoiding the developer the burden of dealing with initialization and
coordination tasks.

• Resource: computer contributed to the community network that runs a dispatcher and, therefore, is able to run
LSim experiments.

• Resource-pool: Allows the discovering of available resources, i.e. the location (IP address ad port) of
dispatchers running in nodes contributed to the framework. We provide a centralized implementation of this
resource-pool and a decentralized implementation using CoDeS. The decentralized implementation using CoDeS is
more suitable for self-managed community networks.

• Launcher: selects the nodes to participate in an experiment according to the requirements included in a
descriptor and deploys the application of protocol instances in these nodes. Descriptor includes, among others, url
of the repository that contains the code to be run, number of instances of each portion of code, initialization
information, etc.

B. LSim Library

Once deployed, the application has to run in a coordinated manner. This is not an easy task: each application or
protocol to be tested should implement all the necessary logic to know where other instances are located, to give
initialization values to each instance, to coordinate the start of each instance, to collect results, to synchronize
intermediate points, etc. LSim Library tries to reduce all this burden to developers by providing a library that hides most
parts of these functionalities behind a reduced set of methods. Therefore, developer only has to implement the parts that
are specific to its application or protocol and LSim Library will do the rest.

The main objective of LSim Library is to be as less intrusive as possible to the original code of the application or
protocol. Like that, the deployed code will be almost the same than if it had been deployed in a real setting without
using LSim.

1) Roles LSim Library

LSim Library has three different roles, each one being responsible of a specific functionality related to the execution
of an experiment:

• Coordinator: coordinates the different instances that run the application or protocol.

• Worker: runs the application or protocol itself.

• Evaluator: collects results from workers and evaluates them.

Developer has to implement a coordinator and one or more evaluator components for each experiment to deal with
specificities of the experiment that is carrying out. Worker should be able to run the initial application or protocol with
the minimal changes.

2) LSim library functionality

LSim offers different functions to configure the experiments and coordinate its execution: initialization, start,
synchronization, send results and stop. Each method acquires a different behavior depending on the role it is running.

To make the application independent from the LSim code, LSim library offers handlers. Handlers allow application
developers to personalize the code executed when any of the mentioned phases starts. Our current prototype offers
simple handlers that can be used on any phase.

Table 1 describes the functionality of each method for each role.

TABLE I. LSIM API

Method Coordinator Worker Evaluator
init(Handler) Initializes itself and generates

configuration information for
workers and evaluators

Initialize the component. Blocks until it receives the initial
configuration and parameters from the coordinator

start(Handler) Generates start information for
workers and sends them a start
signal

Starts the component. Blocks until the coordinator notifies it to
start the experiment.

sendResult(Handler, evalId) Not applicable Sends a result and continue its
execution. Results will be send
to evalId Evaluator

Gets results from workers.

synchronize(Handler, label) Not applicable Blocks on the specified label
until the Coordinator notifies
that execution can continue

Not applicable

stop(Handler) Waits for all workers to stop and
then finishes.

Ends the execution of the component

sendException(Object) After capturing a java exception, send an object to a given location. Application developers can
customize it's behavior

3) Handlers

Most of the methods in table 1 use a handler (callback) passed as a parameter, what allows the developer of the
application or protocol to provide the desired behavior to each method. init, start and synchornize methods execute the
handler after unblocking and is used to get information from the Coordinator. sendResult method execute the handler in
order to prepare the data that LSim has to send to the Evaluator. stop handler is executed before stopping the application
or protocol.

Figure 2 shows an example of initHandler, handler for the init method. It is used to obtain the initialization
parameters of the Worker. Figure 3 shows a portion of the code that has to be added to the application or protocol to
obtain this initialization information.

public class InitHandler implements Handler{

 private List<Object> param;

 /**

 * Creates an instance of initial handler

 */

 public InitHandler(){

 }

 public Object execute(Object obj) {

 param=(List<Object>)obj;

 return null;

 }

 /**

 * Gets the parameters for the element

 * @return List of object, where every object is a parameter

 * that you should cast at correct type according to the order

 * on experiment specification.

 */

 public List<Object> getParameters(){

 return param;

 }

}

Figure 2. Example: handler

// init

InitHandler init = new InitHandler() ;

lsim.init(init);

// getting parametres

List<Object> param = init.getParameters();

String p1 = param.get(0).toString();

int p2 = (Integer)param.get(1);

System.out.println("Received parameters: " + p1 + " " + p2);

Figure 3. Example: using a handler from the application or protocol.

C. Running an experiment using LSim

In this subsection we show that minimal changes are required to adapt an application to be used in LSim and list the
steps to deploy and run an application in a set of nodes that run a LSim dispatcher.

1) Preparing the application

A main objective of the design of LSim is not being intrusive (or at least minimize it) in the application or protocol
code. However, there are minor changes that need to be done to the application or protocol.

The usual flow of an application or protocol is: an initialization (where configuration information is acquired), run
the core of the application of protocol, and stop. In addition, when evaluating the behavior of the application or protocol
it could be interesting to collect partial results (while running the core of the application or protocol) or final results
(after this core part is ended and before stopping). As seen in table 1 LSim Library provides methods to do these
functionalities, what makes very easy and not intrusive to adapt the application or protocol to use LSim Library. Figure
4 shows an example of adapting an application to use LSim Library.

Figure 4. Example of adapting an application to use LSim Library

2) Deploying and executing an experiment

Steps to execute an experiment using LSim:

1. User creates an experiment descriptor and sends it to Launcher. (step 1 in figure 5)

2. Launcher selects a set of nodes that satisfy the requirements specified in the descriptor and sends them the
necessary information to run a Coordinator or an instance of the application or protocol. (step 2 in figure 5)

init()

start()

sendResult()

Application
Initialization

Test
Initialization

Application
Execution

Finish
Execution

Application code before adapting to LSim Application code adapted to LSim

3. Each dispatcher instantiates the Coordinator or the instance of the application or protocol in the running
environment (figure 6)

4. Coordinator initializes each worker (using init method described in table 1)

5. Coordinator starts workers (using start method described in table 1)

6. Instances of the application or protocol communicate among them according to its internal logic. If required, they
use synchronize method provided by LSim to synchronize the execution.

7. When a worker has a result (partial or final result) uses sendResult method provided by LSim to transparently
send the result to an Evaluator component.

8. When a worker finishes or receives a stop message from the coordinator, it executes the stop method and finishes.

9. When an Evaluator has received all expected results evaluates them and sends the final result to the location
indicated in the descriptor of the experiment.

During the whole experiment, if any instance of the application or protocol throws an exception, developer can
capture it and use sendException method to send (transparently) the exception to a given location. This helps the
debugging of distributed application or protocol.

Launcher

User

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

1

2
2

2
2

Figure 5. Steps 1 and 2 to deploy an experiment using LSim framework. (1) User sends the experiment’sdescriptor to the Launcher. (2)Launcher
selects a set o nodes according to the received descriptor and deploys the experiment.

Launcher

User

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Ls
im C

LS
im W LS
im W

LS
im WLS
im W

Figure 6. Steps 3 to deploy an experiment using LSim framework. Each selected dispatcher instantiates a coordinator (C) instance or a worker (W)
instance of the application of protocol.

	UNIVERSITAT OBERTA DE CATALUNYA
	LSim overview
	Abstract
	Overview
	A. Lsim Framework
	B. LSim Library
	1) Roles LSim Library
	2) LSim library functionality
	3) Handlers

	C. Running an experiment using LSim
	1) Preparing the application
	2) Deploying and executing an experiment

