L.Sim: test and evaluation of distributed
applications in realistic environments

Manel Pérez <mpeerez@uoc.edu>
Joan Manel Marques <jmarquesp@uoc.edu>
DPCS research group @ UOC

Outline

Distributed applications development problem
Easing the problem with LS1m

LS1im main features

Current and future goals

Conclusions

[Links and references

e Distributed applications development problem

Distributed applications development problem

* Software testing 1s hard and time consuming, distributed
applications testing 1s even more hard

e Realistic environments problem:

— Daistributes nodes over a network like internet
implies non-deterministic behaviour, non-
reproducibility

— Complex timing of events, complex states

— Setting up a realistic environment manually 1s
complex and requires time

Distributed applications development problem

» Different approaches to distributed applications testing

— Simulation
Allows to run large-scale tests that are difficult to do on
other ways. Great control but hard to set up and simulate
realistic conditions

— Emulation
Easy to abstract different components and analyse their
behaviour, tests are reproducible. Not a real network.
Hard to test extreme conditions achieved with simulation.

— Real deployment on a distributed environment
Test components and whole application under realistic
conditions. Hard to set up environment and large-scale
tests.

e Easing the problem with LS1im

Easing the problem with LS1m

* LSim helps developers to test the application in a real
distributed environment:

— Automates the deployment of the application
components

Deployment

— Flexible parametrization and initialization of tests

— Coordinates the execution of the components of the
distributed application

— Collects and evaluates results

Coordination

— Collects exceptions from different running
Instances

M e [.Sim main features

LSim main features

* LSim 1s composed by two main elements:

— LSim framework:
Automatically deploys the application or protocol
in the resources that will perform the tests

— LSim library
Automates the implementation, coordination and
collection of results

e Currently implemented in Java and run applications inside
aJVM

LSim framework

rResource 1 Resource 2

Running environment: environment that runs the application instance.

Dispatcher: receives requests to execute an application instance and runs it in the running
environment. It has control over the application, being able to stop it if needed.

Resource: computer contributed to the community network that runs a dispatcher.
Resource-pool: Allows the discovering of available resources, i.e. the location (IP address ad
port) of dispatchers running in nodes contributed to the framework.

Launcher: selects the nodes to participate in an experiment according to the requirements
included in a descriptor and deploys the application of protocol instances in these nodes.

10

LSim library

* Tries to reduce the burden of giving initialization values to
each instance, to coordinate the start of each instance, to
collect results, to synchronize intermediate points, etc.

* Objective: to be as less intrusive as possible to the
original code of the application or protocol

* Has 3 different roles, each one being responsible of a
specific functionality related to the execution of an
experiment:

— Coordinator: coordinates the different instances that
run the application

— Worker: runs the application itself

— Evaluator: collects results from workers and evaluates

them t

LSim library API

Adapting an application to use LSim library

Application code before adapting to LSim Application code adapted to LSim

public static void main(String args[])throws Exception]

public void start(L3imDispatcherHandler disp) {
App]ication LiinKorker lsim = new L3imWorker():
1aim.setDispatcher (diap):
SyncBuffer buffer = new SyncBuffer();
ListenerPlus list = new ListenerPlus(0,buffer);

int num = Integer.valueOf{args[(]):
List<InetSocketAddress> brothers = getBrothers(): | Initializatione—
int port = Integer.valueQf (args[l]):

SyncBuffer buffer=new SyncBuffer();

ListenerPlus list=new ListenerPlus(port,buffer). init()

list.bindConnection() :
for(int i=0; i< brothers.size(); ++1i){ Test int num=p.number:;
. Net.send(num, brothers.get(i)); Initialization <— 1izc<mnecsocketiddresss brothers=p.others;

}
int n _me33 = brothers.size()-1;
int mess = 0;

start()

int sum = num; for(int i=0; i< brothers.aize(); +i){
while(meas < n_mesas) | Net.send (num, brothera.get(i}):
while(!buffer.isEmpty(}) { 1
: aum += Integer.valueQf (buffer.getObiect () .toString()); int n_mess = brothers.size()-1;
| meaa+; int meas = 0;
} Application int sum = num;
if(mess < n_mess) | »Execution -e— THlie(mess <nnead)
buffer.StartWzit(); while(tbuffer. isEmpty () {

sum += Integer.valueOf (buffer.getObject().toString(});
mes3++;

i :
System.out.println("Result "+sum); iﬂmss oy
Net.send (new Result (String.valueOf (num),sum), getCorrector()): | gr,a reiait() ;
W | . H
: > Finish

Execution

sendResult()

13

—

Launching an experiment

1. User sends specification to Launcher
2. Launcher locate resources and deploy needed instances

Launching an experiment

~

User

3. Instances deployed and ready

e Current and future goals

Current and future goals

* Make public available current version so users can run
their experiments:

— Automatically deploy experiments to available
dispatchers

- Develop a web interface and desktop client to
simplify experiment launching and execution
tracking

* Deploy dispatchers to multiple machines including
students machines

* Use LSim to evaluate the practices of students of
Distributed Systems subject next course

17

Current and future goals

e Add synchronization methods so developers can test more
complicated states of their applications

* Some examples:

A F— A——— 3 A~ — . .
B———— p—_}— B~ - B —l—
. - . i C—l 3 c — ==
D +— —> p—l e
! ! L AT
(a) (b) (c) (d)

Figure 1: (a) Traditional semantics: All hosts enter the barrier (indicated by the white boxes) and are simultaneously
released (indicated by dotted line). (b) Early entry: The barrier fires after 75% of the hosts arrive. (¢) Throttled release:
Hosts are released in pairs every AT seconds. (d) Counting semaphore: No more than 2 processes are simultancously
allowed 1nto a “critical section” (indicated by the grey regions). When one node exits the critical section, another host

15 allowed to enter.

Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. Loose Synchronization for Large-Scale Networked Systems.
In USENIX Annual Technical Conference (USENIX), June 2006.

18

Conclusions

Conclusions

* We presented LSim, a tool to help developing, testing and
evaluation of distributed applications

* We are almost ready to make public available a version of
the tool and get plenty of feedback from current
distributed application developers.

20

e [Links and references

Links and references

e LSim page with documentation and tutorials
— http://dpcs.uoc.edu/projects/Isim
e Contact information:

- mpeerez@uoc.edu

— Jjmarquesp@uoc.edu

22

http://dpcs.uoc.edu/projects/lsim
mailto:mpeerez@uoc.edu
mailto:jmarquesp@uoc.edu

Thanks for you attention

23

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

