
LSim: test and evaluation of distributed
applications in realistic environments

Manel Pérez <mpeerez@uoc.edu>
Joan Manel Marquès <jmarquesp@uoc.edu>
DPCS research group @ UOC

2

Outline

● Distributed applications development problem
● Easing the problem with LSim
● LSim main features
● Current and future goals
● Conclusions
● Links and references

3

● Distributed applications development problem
● Easing the problem with LSim
● LSim main features
● Current and future goals
● Conclusions
● Links and references

4

Distributed applications development problem

● Software testing is hard and time consuming, distributed
applications testing is even more hard

● Realistic environments problem:

– Distributes nodes over a network like internet
implies non-deterministic behaviour, non-
reproducibility

– Complex timing of events, complex states

– Setting up a realistic environment manually is
complex and requires time

5

Distributed applications development problem

● Different approaches to distributed applications testing

– Simulation
Allows to run large-scale tests that are difficult to do on
other ways. Great control but hard to set up and simulate
realistic conditions

– Emulation
Easy to abstract different components and analyse their
behaviour, tests are reproducible. Not a real network.
Hard to test extreme conditions achieved with simulation.

– Real deployment on a distributed environment
Test components and whole application under realistic
conditions. Hard to set up environment and large-scale
tests.

6

● Distributed applications development problem
● Easing the problem with LSim
● LSim main features
● Current and future goals
● Conclusions
● Links and references

7

Easing the problem with LSim

● LSim helps developers to test the application in a real
distributed environment:

– Automates the deployment of the application
components

– Flexible parametrization and initialization of tests

– Coordinates the execution of the components of the
distributed application

– Collects and evaluates results

– Collects exceptions from different running
instances

D
ep

lo
ym

en
t

C
oo

rd
in

a t
io

n

8

● Distributed applications development problem
● Easing the problem with LSim
● LSim main features
● Current and future goals
● Conclusions
● Links and references

9

LSim main features

● LSim is composed by two main elements:

– LSim framework:
Automatically deploys the application or protocol
in the resources that will perform the tests

– LSim library
Automates the implementation, coordination and
collection of results

● Currently implemented in Java and run applications inside
a JVM

10

LSim framework

Running environment: environment that runs the application instance.
Dispatcher: receives requests to execute an application instance and runs it in the running
environment. It has control over the application, being able to stop it if needed.
Resource: computer contributed to the community network that runs a dispatcher.
Resource-pool: Allows the discovering of available resources, i.e. the location (IP address ad
port) of dispatchers running in nodes contributed to the framework.
Launcher: selects the nodes to participate in an experiment according to the requirements
included in a descriptor and deploys the application of protocol instances in these nodes.

11

LSim library

● Tries to reduce the burden of giving initialization values to
each instance, to coordinate the start of each instance, to
collect results, to synchronize intermediate points, etc.

● Objective: to be as less intrusive as possible to the
original code of the application or protocol

● Has 3 different roles, each one being responsible of a
specific functionality related to the execution of an
experiment:

– Coordinator: coordinates the different instances that
run the application

– Worker: runs the application itself

– Evaluator: collects results from workers and evaluates
them

12

LSim library API

Method Coordinator Worker Evaluator

init(Handler) Initializes itself and generates
configuration information for
workers and evaluators

Initialize the component. Blocks until it receives the initial
configuration and parameters from the coordinator

start(Handler) Generates start information for
workers and sends them a start
signal

Starts the component. Blocks until the coordinator notifies it to
start the experiment.

sendResult(Handler,
evalId)

Not applicable Sends a result and continue its
execution. Results will be send to
evalId Evaluator

Gets results from workers.

synchronize(Handler,
label)

Not applicable Blocks on the specified label until
the Coordinator notifies that
execution can continue

Not applicable

stop(Handler) Waits for all workers to stop and
then finishes.

Ends the execution of the component

sendException(Object) After capturing a java exception, send an object to a given location. Application
developers can customize it's behavior

13

Adapting an application to use LSim library

init()

start()

sendResult()

Application
Initialization

Test
Initialization

Application
Execution

Finish
Execution

Application code before adapting to LSim Application code adapted to LSim

14

Launching an experiment

Launcher

User

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

1

2
2

2

2

1. User sends specification to Launcher
2. Launcher locate resources and deploy needed instances

15

Launching an experiment

Launcher

User

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Dispatcher

Ls
im

Co
or

d

Appl.C

LS
im

W
or

ke
r

Appl.W

LS
im

W
or

ke
r

Appl.W

Ls
im

W
or

ke
r

Appl.W
LS

im
W

or
ke

r

Appl.W

3. Instances deployed and ready

16

● Distributed applications development problem
● Easing the problem with LSim
● LSim main features
● Current and future goals
● Conclusions
● Links and references

17

Current and future goals

● Make public available current version so users can run
their experiments:

– Automatically deploy experiments to available
dispatchers

– Develop a web interface and desktop client to
simplify experiment launching and execution
tracking

● Deploy dispatchers to multiple machines including
students machines

● Use LSim to evaluate the practices of students of
Distributed Systems subject next course

18

Current and future goals

● Add synchronization methods so developers can test more
complicated states of their applications

● Some examples:

Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. Loose Synchronization for Large-Scale Networked Systems.
In USENIX Annual Technical Conference (USENIX), June 2006.

19

● Distributed applications development problem
● Easing the problem with LSim
● LSim main features
● Current and future goals
● Conclusions
● Links and references

20

Conclusions

● We presented LSim, a tool to help developing, testing and
evaluation of distributed applications

● We are almost ready to make public available a version of
the tool and get plenty of feedback from current
distributed application developers.

21

● Distributed applications development problem
● Easing the problem with LSim
● LSim main features
● Current and future goals
● Conclusions
● Links and references

22

Links and references

● LSim page with documentation and tutorials

– http://dpcs.uoc.edu/projects/lsim
● Contact information:

– mpeerez@uoc.edu

– jmarquesp@uoc.edu

http://dpcs.uoc.edu/projects/lsim
mailto:mpeerez@uoc.edu
mailto:jmarquesp@uoc.edu

23

Thanks for you attention

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

